51 research outputs found

    Constraining the sources and cycling of dissolved organic carbon in a large oligotrophic lake using radiocarbon analyses

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 208 (2017): 102-118, doi:10.1016/j.gca.2017.03.021.We measured the concentrations and isotopic compositions of solid phase extracted (SPE) dissolved organic carbon (DOC) and high molecular weight (HMW) DOC and their constituent organic components in order to better constrain the sources and cycling of DOC in a large oligotrophic lacustrine system (Lake Superior, North America). SPE DOC constituted a significant proportion (41-71 %) of the lake DOC relative to HMW DOC (10-13%). Substantial contribution of 14C-depleted components to both SPE DOC (Δ14C = 25 to 43‰) and HMW DOC (Δ14C = 22 to 32‰) was evident during spring mixing, and depressed their radiocarbon values relative to the lake dissolved inorganic carbon (DIC; Δ14C ~ 59‰). There was preferential removal of 14C-depleted (older) and thermally recalcitrant components from HMW DOC and SPE DOC in the summer. Contemporary photoautotrophic addition to HMW DOC was observed during summer stratification in contrast to SPE DOC, which decreased in concentration during stratification. Serial thermal oxidation radiocarbon analysis revealed a diversity of sources (both contemporary and older) within the SPE DOC, and also showed distinct components within the HMW DOC. The thermally labile components of HMW DOC were 14C-enriched and are attributed to heteropolysaccharides (HPS), peptides/amide and amino sugars (AMS) relative to the thermally recalcitrant components reflecting the presence of older material, perhaps carboxylic-rich alicyclic molecules (CRAM). The solvent extractable lipid-like fraction of HMW DOC was very 14C-depleted (as old as 1270-2320 14C years) relative to the carbohydrate-like and protein-like substances isolated by acid hydrolysis of HMW DOC. Our data constrain relative influences of contemporary DOC and old DOC, and DOC cycling in a modern freshwater ecosystem.This work was funded by the National Science Foundation OCE 0825600 to E.C.M. and J.P.W., a graduate student internship fellowship to P.K.Z by National Ocean Sciences Accelerator Mass Spectrometry Facility (OCE 0753487), and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution to P.K.Z, with funding provided by the National Ocean Sciences Accelerator Mass Spectrometry Facility (OCE 0753487)

    Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments

    Get PDF
    Reactions between reduced inorganic sulfur and organic compounds are thought to be important for the preservation of organic matter (OM) in sediments, but the sulfurization process is poorly understood. Sulfur isotopes are potentially useful tracers of sulfurization reactions, which often occur in the presence of a strong porewater isotopic gradient driven by microbial sulfate reduction. Prior studies of bulk sedimentary OM indicate that sulfurized products are ^(34)S-enriched relative to coexisting sulfide, and experiments have produced ^(34)S-enriched organosulfur compounds. However, analytical limitations have prevented the relationship from being tested at the molecular level in natural environments. Here we apply a new method, coupled gas chromatography – inductively coupled plasma mass spectrometry, to measure the compound-specific sulfur isotopic compositions of volatile organosulfur compounds over a 6 m core of anoxic Cariaco Basin sediments. In contrast to current conceptual models, nearly all extractable organosulfur compounds were substantially depleted in ^(34)S relative to coexisting kerogen and porewater sulfide. We hypothesize that this ^(34)S depletion is due to a normal kinetic isotope effect during the initial formation of a carbon-sulfur bond and that the source of sulfur in this relatively irreversible reaction is most likely the bisulfide anion in sedimentary pore water. The ^(34)S-depleted products of irreversible bisulfide addition alone cannot explain the isotopic composition of total extractable or residual OM. Therefore, at least two different sulfurization pathways must operate in the Cariaco Basin, generating isotopically distinct products. Compound-specific sulfur isotope analysis thus provides new insights into the timescales and mechanisms of OM sulfurization

    The use of dithiothreitol for the quantitative analysis of elemental sulfur concentrations and isotopes in environmental samples

    Get PDF
    Determining the concentration and isotopic composition of elemental sulfur in modern and ancient environments is essential to improved interpretation of the mechanisms and pathways of sulfur utilization in biogeochemical cycles. Elemental sulfur can be extracted from sediment or water samples and quantified by converting to hydrogen sulfide. Alternatively, elemental sulfur concentrations can themselves be analyzed using HPLC and other methodologies; however, the preparation and analysis times can be long and these methods are not amenable to stable isotopic analysis. Current reduction methods involve the use of costly and specialized glassware in addition to toxins such as chromium chloride or cyanide to reduce the sulfur to hydrogen sulfide. The novel reduction method presented here uses dithiothreitol (DTT) as a less toxic reducing agent to obtain both elemental sulfur concentrations and isotopic composition from the same sample. The sample is dissolved in an aqueous or organic liquid medium and upon reaction with DTT, the elemental sulfur is volatilized as hydrogen sulfide and collected in a sulfide trap using an inexpensive gas extraction apparatus. The evolved sulfide concentrations can easily be measured for concentration, by absorbance spectrophotometery or voltammetry techniques, and then analyzed for sulfur isotopic composition. The procedure is quantitative at >93% recovery to dissolved elemental sulfur with no observed sulfur isotope fractionation during reduction and recovery. Controlled experiments also demonstrate that DTT is not reactive to sulfate, sulfite, pyrite, or organic sulfur

    Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments

    Get PDF
    a b s t r a c t Reactions between reduced inorganic sulfur and organic compounds are thought to be important for the preservation of organic matter (OM) in sediments, but the sulfurization process is poorly understood. Sulfur isotopes are potentially useful tracers of sulfurization reactions, which often occur in the presence of a strong porewater isotopic gradient driven by microbial sulfate reduction. Prior studies of bulk sedimentary OM indicate that sulfurized products are 34 S-enriched relative to coexisting sulfide, and experiments have produced 34 S-enriched organosulfur compounds. However, analytical limitations have prevented the relationship from being tested at the molecular level in natural environments. Here we apply a new method, coupled gas chromatography -inductively coupled plasma mass spectrometry, to measure the compound-specific sulfur isotopic compositions of volatile organosulfur compounds over a 6 m core of anoxic Cariaco Basin sediments. In contrast to current conceptual models, nearly all extractable organosulfur compounds were substantially depleted in 34 S relative to coexisting kerogen and porewater sulfide. We hypothesize that this 34 S depletion is due to a normal kinetic isotope effect during the initial formation of a carbon-sulfur bond and that the source of sulfur in this relatively irreversible reaction is most likely the bisulfide anion in sedimentary porewater. The 34 S-depleted products of irreversible bisulfide addition alone cannot explain the isotopic composition of total extractable or residual OM. Therefore, at least two different sulfurization pathways must operate in the Cariaco Basin, generating isotopically distinct products. Compound-specific sulfur isotope analysis thus provides new insights into the timescales and mechanisms of OM sulfurization

    Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments

    Get PDF
    a b s t r a c t Reactions between reduced inorganic sulfur and organic compounds are thought to be important for the preservation of organic matter (OM) in sediments, but the sulfurization process is poorly understood. Sulfur isotopes are potentially useful tracers of sulfurization reactions, which often occur in the presence of a strong porewater isotopic gradient driven by microbial sulfate reduction. Prior studies of bulk sedimentary OM indicate that sulfurized products are 34 S-enriched relative to coexisting sulfide, and experiments have produced 34 S-enriched organosulfur compounds. However, analytical limitations have prevented the relationship from being tested at the molecular level in natural environments. Here we apply a new method, coupled gas chromatography -inductively coupled plasma mass spectrometry, to measure the compound-specific sulfur isotopic compositions of volatile organosulfur compounds over a 6 m core of anoxic Cariaco Basin sediments. In contrast to current conceptual models, nearly all extractable organosulfur compounds were substantially depleted in 34 S relative to coexisting kerogen and porewater sulfide. We hypothesize that this 34 S depletion is due to a normal kinetic isotope effect during the initial formation of a carbon-sulfur bond and that the source of sulfur in this relatively irreversible reaction is most likely the bisulfide anion in sedimentary porewater. The 34 S-depleted products of irreversible bisulfide addition alone cannot explain the isotopic composition of total extractable or residual OM. Therefore, at least two different sulfurization pathways must operate in the Cariaco Basin, generating isotopically distinct products. Compound-specific sulfur isotope analysis thus provides new insights into the timescales and mechanisms of OM sulfurization

    Characterization of diverse bacteriohopanepolyols in a permanently stratified, hyper-euxinic lake

    Get PDF
    Bacteriohopanepolyols (BHPs) are a diverse class of bacterial lipids that hold promise as biomarkers of specific microbes, microbial processes, and environmental conditions. BHPs have been characterized in a variety of terrestrial and aquatic environments, but less is known about their distribution and abundance in extreme environmental systems. In the present study, samples taken from the water column and upper sediments of the hyper-euxinic, meromictic Mahoney Lake (Canada) were analyzed for BHPs. Analyses show distinct BHP distributions within the oxic mixolimnion, the chemocline, and the euxinic monimolimnion. Bacteriohopanetetrol (BHT) and unsaturated BHT are the dominant BHPs found in the oxic mixolimnion and at the chemocline, whereas a novel BHP (tentatively identified as diunsaturated aminotriol) dominates the euxinic monimolimnion. Along with the novel BHP structure, composite BHPs (i.e., BHT-cyclitol ether and BHT-glucosamine) were observed in the euxinic monimolimnion and sediments, indicating their production by anaerobic bacteria. Complementary metagenomic analysis of genes involved in BHP biosynthesis (i.e., shc, hpnH, hpnO, hpnP, and hpnR) further revealed that BHPs in Mahoney Lake are most likely produced by bacteria belonging to Deltaproteobacteria, Chloroflexi, Planctomycetia, and Verrucomicrobia. The combined observations of BHP distribution and metagenomic analyses additionally indicate that 2- and 3-methyl BHTs are produced within the euxinic sediments in response to low oxygen and high osmotic concentrations, as opposed to being diagnostic biomarkers of cyanobacteria and aerobic metabolisms

    Alternative Pest Control Methods for Homeowners

    Get PDF
    This fact sheet explains how using a comprehensive, or integrated pest management approach, will help home gardeners reduce their reliance on pesticides for pest control

    蓮華寺池と西湖 : 石野雲嶺の風景

    Get PDF
    The potential for increased drought frequency and severity linked to anthropogenic climate change in the semi-arid regions of the southwestern United States (US) is a serious concern1. Multi-year droughts during the instrumental period2 and decadal-length droughts of the past two millennia1, 3 were shorter and climatically different from the future permanent, ‘dust-bowl-like’ megadrought conditions, lasting decades to a century, that are predicted as a consequence of warming4. So far, it has been unclear whether or not such megadroughts occurred in the southwestern US, and, if so, with what regularity and intensity. Here we show that periods of aridity lasting centuries to millennia occurred in the southwestern US during mid-Pleistocene interglacials. Using molecular palaeotemperature proxies5 to reconstruct the mean annual temperature (MAT) in mid-Pleistocene lacustrine sediment from the Valles Caldera, New Mexico, we found that the driest conditions occurred during the warmest phases of interglacials, when the MAT was comparable to or higher than the modern MAT. A collapse of drought-tolerant C4 plant communities during these warm, dry intervals indicates a significant reduction in summer precipitation, possibly in response to a poleward migration of the subtropical dry zone. Three MAT cycles ~2 °C in amplitude occurred within Marine Isotope Stage (MIS) 11 and seem to correspond to the muted precessional cycles within this interglacial. In comparison with MIS 11, MIS 13 experienced higher precessional-cycle amplitudes, larger variations in MAT (4–6 °C) and a longer period of extended warmth, suggesting that local insolation variations were important to interglacial climatic variability in the southwestern US. Comparison of the early MIS 11 climate record with the Holocene record shows many similarities and implies that, in the absence of anthropogenic forcing, the region should be entering a cooler and wetter phase
    corecore