2,804 research outputs found

    Heterocycle-based bifunctional organocatalysts in asymmetric synthesis

    Get PDF
    Different chiral bifunctional organocatalysts derived from trans-cyclohexane-1,2-diamine bearing different types of guanidine units able to form-hydrogen bonding activation have been designed. Conformational rigid 2-aminobenzimidazoles bearing a tertiary amino group have been used in enantioselective Michael type reactions of activated methylene compounds to nitroalkenes. The C2 symmetric bis(2-aminobenzimidazole) derivatives the appropriate organocatalyst for the conjugate addition of 1,3-dicarbonyl compounds to maleimides as well as for the SN1 reaction of benzylic alcohols with carbon nucleophiles. 2-Aminobenzimidazoles bearing a primary amino group have shown excellent catalytic activity in the Michael reaction of aldehydes to maleimides and nitroalkenes. Diastereomeric 2-aminopyrimidines bearing a prolinamide unit have been incorporated in the trans-cyclohexane-1,2-diamine scaffold and have been used for the inter- and intra-molecular direct aldol reaction under solvent-free conditions. For the Michael reaction of aldehydes with maleimides the primary amine 2-aminopyrimidine has shown excellent efficiency as organocatalyst. The bifunctional character of these organocatalysts has been demonstrated by means of DFT calculations.The Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387, and Consolider Ingenio 2010, CSD2007-00006), the Spanish Ministerio de Economía y Competitividad (MINECO) (projects CTQ2013-43446-P and CTQ2014-51912-REDC), FEDER, the Generalitat Valenciana (PROMETEO 2009/039 and PROMETEOII/2014/017), the Basque Government (GV Grant IT-291-07), the FP7 Marie Curie Actions of the European Commission via the ITN ECHONET network (MCITN-2012-316379) and the Universities of Alicante and Basque Country are gratefully acknowledged for financial support. We also thank for technical and human support provided by IZO-SGI SGIker of UPV-EHU and European funding (ERDF and ESF)

    Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models

    Get PDF
    Semantic image segmentation is a central and challenging task in autonomous driving, addressed by training deep models. Since this training draws to a curse of human-based image labeling, using synthetic images with automatically generated labels together with unlabeled real-world images is a promising alternative. This implies to address an unsupervised domain adaptation (UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of semantic segmentation models. It consists of a self-training stage, which provides two domain-adapted models, and a model collaboration loop for the mutual improvement of these two models. These models are then used to provide the final semantic segmentation labels (pseudo-labels) for the real-world images. The overall procedure treats the deep models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is required, nor explicit feature alignment. We test our proposal on standard synthetic and real-world datasets for on-board semantic segmentation. Our procedure shows improvements ranging from ~13 to ~26 mIoU points over baselines, so establishing new state-of-the-art results

    Isotope Labelling for Reaction Mechanism Analysis in DBD Plasma Processes

    Get PDF
    Dielectric barrier discharge (DBD) plasmas and plasma catalysis are becoming an alternative procedure to activate various gas phase reactions. A low-temperature and normal operating pressure are the main advantages of these processes, but a limited energy efficiency and little selectivity control hinder their practical implementation. In this work, we propose the use of isotope labelling to retrieve information about the intermediate reactions that may intervene during the DBD processes contributing to a decrease in their energy efficiency. The results are shown for the wet reforming reaction of methane, using D2O instead of H2O as reactant, and for the ammonia synthesis, using NH3/D2/N2 mixtures. In the two cases, it was found that a significant amount of outlet gas molecules, either reactants or products, have deuterium in their structure (e.g., HD for hydrogen, CDxHy for methane, or NDxHy for ammonia). From the analysis of the evolution of the labelled molecules as a function of power, useful information has been obtained about the exchange events of H by D atoms (or vice versa) between the plasma intermediate species. An evaluation of the number of these events revealed a significant progression with the plasma power, a tendency that is recognized to be detrimental for the energy efficiency of reactant to product transformation. The labelling technique is proposed as a useful approach for the analysis of plasma reaction mechanisms

    Investigating the M(hkl)| ionic liquid interface by using laser induced temperature jump technique

    Get PDF
    The interface between several Room Temperature Ionic Liquids (RTILs) in contact with both Au(hkl) basal planes and Pt(111) was studied by using cyclic voltammetry and Laser Induced Temperature Jump Technique (LITJT). Three RTILs, based on the imidazolium cation and the [Tf2N] anion were investigated: [Emmim][Tf2N], [Emim][Tf2N] and [Bmmim][Tf2N]. These three RTILs were selected with the aim to analyse how the balance between the different ion-ion interactions influences the interfacial properties of the M(hkl)|RTIL interface. It was found that the voltammetric response of the Au(hkl)|[Emmim][Tf2N] was highly sensitive to the geometry of the active surface sites, displaying sharp spikes superimposed to a capacitive voltammetric current. Conversely, these sharp spikes disappeared when [Bmmim][Tf2N] replaced [Emmim][Tf2N], although the capacitive voltammetric current profile was essentially maintained. This result is most likely related to the increase of the van der Waals interactions in the [Bmmim][Tf2N]. When [Emim][Tf2N] was analysed, the increase of the hydrogen bond interactions due to the hydrogenation of C2 (second carbon at the imidazolium ring) resulted also in the disappearance of the voltammetric spikes. The laser measurements showed that the highest values of the potential of maximum entropy (pme) in RTIL media correspond to the atomically closest packet surface structures, following the order: Au(111)>Au(100)>Au(110), in agreement with work function values. The measurement with Pt(111) revealed that the voltammetric profiles for this surface are featureless in all cases. However, the laser experiments revealed that solvent restructuration, as a function of both value and direction of the applied potential, is dependent on the type of cation. Finally, the interface Au(hkl)|Choline chloride:urea Deep Eutectic Solvent (DES) was also investigated by using cyclic voltammetry and LITJT. The voltammetric response of DES was also sensitive to the orientation of the Au single crystal, and the cyclic voltammograms displayed distinct sharp and characteristic features. Nevertheless, the laser response could not provide a value of the pme for the Au(hkl)|DES interface, likely due to the complex chemical structure of the DES which, in addition, strongly adsorbs on Au(hkl)

    Application of the Wavelet Transform to the Digital Image Processing of Electron Micrographs and of Backreflection Electron Diffraction Patterns

    Get PDF
    In this work we explore the use of the so-called wavelet transform in the digital image processing of micrographs. The wavelet transform of an image f(x,y) is defined as: Wf(s,u,v) = f(x,y) s Ψ(s(x-u),s(y-v)) dxdy where Ψ is an analyzing function called wavelet and which is in our examples always taken to be the Mexican hat given by Ψ(x)=(2-(x2+y2))exp(-(x2+y2)/2) Some synthetic images are shown in which it can be clearly seen how the wavelet transform can be useful to reveal edges and to emphasize the boundaries of the clusters. The technique is applied in the case of the CoMoS catalysts, in which the wavelet transform can be used to emphasize the hexagonal domains while filtering the noise quite effectively. The technique is next applied to electron backreflection patterns where substantial noise reduction and emphasis of the lines are achieved. Several examples of the application of this processing tool to high resolution images of metallic particles and to quasicrystals are presented

    Modelo geométrico para construir la ecuación de segundo grado

    Get PDF
    En este artículo1 se presentan una serie de reflexiones acerca de un trabajo de investigación en el aula realizado en el Centro Distrital John F. Kennedy. El tema de matemáticas sobre el que se centró la investigación fue la construcción de la expresión algebraica de una ecuación de segundo grado aplicando el concepto de área de un rectángulo. Hemos dividido la presentación del trabajo en dos partes. En la primera, se da cuenta de un diagnóstico en el que se indagó acerca del estado de conocimiento de los estudiantes con respecto al tema y también sobre algunas de sus características socio-económicas. En la segunda, se presenta el análisis curricular realizado alrededor del tema y cuyo propósito era apoyar la realización del diseño de una actividad de aula de noventa minutos. En los procesos anteriores se tuvieron en cuenta algunas pautas de análisis didáctico tales como proponer un modelo sobre la estructura matemática del tema, indagar sobre el conocimiento previo de los estudiantes acerca de los prerrequisitos necesarios para abordar el tema y la forma como usualmente se ha enfocado la enseñanza del tema en nuestro contexto

    Pyrimidine-Derived Prolinamides as Recoverable Bifunctional Organocatalysts for Enantioselective Inter- and Intramolecular Aldol Reactions under Solvent-Free Conditions

    Get PDF
    Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.The Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387 and Consolider Ingenio 2010, CSD2007-00006), the Spanish Ministerio de Economia y Competitividad (MINECO) (projects CTQ2013-43446-P and CTQ2014-51912-REDC), Fondos Europeos para el Desarrollo Regional (FEDER), Generalitat Valenciana (PROMETEO 2009/039 and PROMETEOII/2014/017), the Basque Government (GV Grant IT-291-07), the European Commission, FP7 Marie Curie Actions through the ITN ECHONET network (MCITN-2012-316379), the University of Alicante, and the University of the Basque Country are gratefully acknowledged for financial support

    An attitude-based reasoning strategy to enhance interaction with augmented objects

    Get PDF
    This paper describes a mobile-based system to interact with objects in smart spaces, where the offer of resources may be extensive. The underlying idea is to use the augmentation capabilities of the mobile device to enable it as user-object mediator. In particular, the paper details how to build an attitude-based reasoning strategy that facilitates user-object interaction and resource filtering. The strategy prioritizes the available resources depending on the spatial history of the user, his real-time location and orientation and, finally, his active touch and focus interactions with the virtual overlay. The proposed reasoning method has been partially validated through a prototype that handles 2D and 3D visualization interfaces. This framework makes possible to develop in practice the IoT paradigm, augmenting the objects without physically modifying them

    AMCIS 2017 Panel Report: Experiences in Online Education

    Get PDF
    In this AMCIS 2017 online education panel, five experienced business school professors from differently sized public and private institutions in three different countries (USA, Mexico, and Spain) discussed how online education (i.e., eLearning, technology-mediated knowledge transfer) occurred in their institutions. They presented low-budget and high-budget examples and described what they have found to be best practices in eLearning at both the institution and the instructor level. They also demonstrated that one can accomplish online education in many different ways and with varying budgets, but, as long as one bases it on solid educational principles and mastery of the technology, it can be as effective as (if not more than) traditional face-to-face education. This report builds on their presentations and additional information gathered from the literature
    corecore