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APPLICATION OF THE WAVELET TRANSFORM TO THE DIGITAL IMAGE PROCESSING OF 
ELECTRON MICROGRAPHS AND OF BACKREFLECTION ELECTRON DIFFRACTION PATTERNS 

A. Gomez*, L. Beltran del Rio, D. Romeu and M. Jose Yacaman 

Institute de Fisica, U.N.A.M. 
Apartado Postal 20-364, Mexico D.F. C.P. 01000, Mexico 

Abstract 

In this work we explore the use of 
the so-called wavelet transform in the 
digital image processing of micrographs. 
The wavelet transform of an image f(x,y) 
is defined as: 
Wf(s,u,v) 

~r _r f(x,y) s i(s(x-u),s(y-v)) dxdy 

where 1/1 is an analyzing function called 
"wavelet" and which is in our examples 
always taken to be the "Mexican hat" 
given by 
I/J(x)=(2-(x 2+y 2 ))exp(-(x 2+y 2 )/2) 

Some synthetic images are shown in 
which it can be clearly seen how the 
wavelet transform can be useful to reveal 
edges and to emphasize the boundaries of 
the clusters. 

The technique is applied in the 
case of the CoMoS catalysts, in which the 
wavelet transform can be used to 
emphasize the hexagonal domains while 
filtering the noise quite effectively.The 
technique is next applied to electron 
backreflection patterns where substantial 
noise reduction and emphasis of the lines 
are achieved. 

Several examples of the application 
of this processing tool to high 
resolution images of metallic particles 
and to quasicrystals are presented. 

Key Words: Digital image processing, 
digital filters, electron diffraction, 
electron microscopy, quasicrystals. 
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Introduction 

Many of the modern techniques for 
structural research in materials science 
provide the information in the form of 
images. Some examples of this are the 
transmission electron microscope (in 
either bright field, dark field or 
diffraction modes), the scanning electron 
microscope, the optical microscope and 
the field ion microscope. 

Furthermore, other techniques 
provide their information in the form of 
unidimensional signals, the x-ray 
diffractometer being a good example. 

In all these cases, the relevant 
information can be "masked". For 
instance, the noise level can be such 
that it hampers the detection of the 
information known ( or suspected ) to be 
present . Sometimes it is not the noise 
but the other components of the signal 
that masks the desired information. 

For this reason , over the years 
many techniques have been developed for 
the digital processing of images so that 
noise can be filtered out and the 
relevant details in the images can be 
enhanced ( Kirkland, 1984; Tomita et al., 
1985; De Jong et al., 1989) 

Among the digital processing 
techniques, perhaps those based on the 
Fourier transform are the most important. 
With these techniques, the images are 
analyzed in the frequency domain (i.e. in 
terms of the periodicities present in the 
image) rather than in the space domain. 

However recently new techniques 
have been developed that allow a mixed 
approach, characterizing the images 
simultaneously in both space and 
frequency domains ( at least to the 
extent that the "uncertainty principle" 
permits). 

Examples of such techniques are the 
Wigner distribution, the window Fourier 
transform (Gabor's transform, or short 
time Fourier transform) and the wavelet 
transform. 

The purpose of the present work is 
to explore the use of the wavelet 
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transform to the digital image processing 
of transmission electron micrographs and 
of electron diffraction patterns. 

The Wavelet Transform 

In the next paragraphs a general 
overview of wavelet transforms is 
presented In order to keep theory 
simple the one-dimensional case is 
presented. In the images (which are 
2-dimensional) the obvious generalization 
(section on the Bidimensional Case) is 
used. Grossman et al. (1985); Mallat, 
(1989); and Daubechies, (1990) present 
the theory in much greater detail. 
Basic Definitions 

Let W(x) be a complex-valued 
function of a real variable (hereafter 
referred to as wavelet). W will be 
assumed to satisfy the so-called 
admissibility condition (see section on 
the admissibility condition below). 

Givens* O and u, real numbers, we 
form the scaled and displaced functions 

~ W(s(x-u)). 
When u=O we use the shorthand 

W (x)=~ W(sx). 
s 

Let f(x) be another complex valued 
function (the function or "signal" to be 
analyzed). We define the wavelet 
transform of f (x) with respect to the 
wavelet W(x) gs 

Wf(s,u):l f(x)~ w*(s(x-u)) dx 

* f(x) W (x-u) dx 
s 

(1) 

Admissibility condition 
It can be shown that, in order to 

have an inverse for the transform, the 
wavelet W must satisfy the so-called 
admissibility condition 

l°' l~-1~2.l:.dw< oo (2) 
- I w IA 
where W denotes the Fourier transform of 
w. 

If W(w) decays 
lwl - oo then 
condition amounts to 
W(O)=O 

sufficiently fast as 
the admissibility 

saying that 

which in turn implies that, 
dJ!cays sufficiently fast as lxl 

if 

- 00 

W(x) 

J W(x) dx = o ( 3) 

The wavelet transform as an inner product 
The transform Wf can be written as 

Wf(s,u)=<W
5

(x-u) ,f(x)> (4) 

where < > denotes the standard inner 
product 

<h,f>:l h*(x) f(x) dx (5) 
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The wavelet transform as a convolution 
Defining W.(x)=W

5
(-x), then 

-* Wf(s,u)=[f* W ] (u) 
s 

( 6) 

where * denotes the operation of 
convoluti£n defined in general as 

[h*f] (u) :l f (x) h (u-x) dx (7) 

Fourier Representation 
From the convolution representation 

it follows that the Fourier transform of 
the wavelet transform (with respect to 
the translation parameter u) is, in view 
Qf the copvoluti~~ theorem, 
Wf(s,w) =f(w) ':J W 

A -1/2 ,._ * $ 

= f(w) (s )W (w/s) (8) 
(here the symbol ':J and the "circumflex" A 

have been used to denote Fourier 
transformation). 
Inversion of the transform 

It can be proved that the wavelet 
transform can be inverted as 

f(x)= 

00 00 

l l Wf(s,u) W (x-u) ds du 
s 

(9) 

where c = 

00

ll~-i~ll:.dw 
W - I w I 

(10) 

From this expression it can be seen 
that the function f(x) can be thought of 
as a superposition of the various 
wavelets. 
Passing bands and bandwidths 

In what follows we will assume that 
WJx) is normal£zed so 

l 2 l A 2 _ I W ( x) I dx = _ I W ( w) I dw = 1 (11) 

The center of the passing band of 
W(wl is calculated as 

(12) 

Remark: usually W is real so 
A A 

IW(w) l=IW(-w) I and the integral from -oo 
to +oo would give zero That's why the 
integrals are taken from Oto +oo. 

The r.m.s. bandwidth of W(w) around 
w

0 
is defined, consequently, as uw where 

2 r 2 A 2 u w = 
6 

( w-w 
O 

) I W ( w) I dw (13) 

A The center of the passing band of 
W(w/s) (and consequently of ':JW) is, 

~hen, 
00 

A* 2 [ r I W ( w / s) I dw 
6 

A 2 
w IW(w) I dw= SW 

0 

s 

- 1 

A* 2 ] I W ( w / s ) I dw = 

(14) 
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Therms bandwidth of i/J (w/s) is , 
since 

00 00 

[cw-wo)
2

1~(w/s) 1
2 

dw[ I 
2 2 

s (T 
w 

given bys crw. 

- I 

I i/J ( w Is) I dw = ~ * 2 ] 

(15) 

Thus we see that i/J s represents a 

function with frequencies around sw
0 

with 

rms deviations er • 
w 

Space localization 
Performing the same sort of 

calculations, but now in real space, one 
finds that the wavelet is centered around 
zero (provided one assumes that 11/J(x) I is 
eien ) since 

J x I i/J ( x) I 
2 

dx= o ( 16) 

The r.m.s. deviation of i/J with 
respe~t too is given by 

< J x 2 
I i/J (x) I 

2 
dx ( 17) 

One can easily see that i/J
5

(x-u) is 

concentrated around 
00 00 

u 
The r. m. s deviation of 

cr
2 

is given by er /s since 
u, s u 

00 

l(x-u)
2 

li/J
5

(x-u)l
2 

dx 

so 
er = er /s. 

u,s 

Thus we see that the 
i/J s (x-u) are centered around u 

deviation cr /s. 
u 

Phase space localization 

(18) 
i/Js (x-u) 

(19) 

(20) 

functions 
with rms 

The wavelet transform is a 
decomposition in functions which are 
reasonably well localized in both space 
and spatial frequency (or time and 
frequency), of course within the 
limitations of the uncertainty principle 
(Tu(TW?:: 1/2. 

Perhaps the simplest example of 
time-frequency localization is a musical 
score in which one states when a note is 
to be played and what itsfreguency is 
(but notice that it is impossible to 
state both with infinite accuracy). 

From the previous section it can be 
seen that phase space can be divided in 
cells as shown in figure 1. 

Notice that the size of the cells 
varies withs. 
Discrete transforms 

In practice 
transforms in which 

- sampling 
one works with 

the variables sand u 
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are not continuous but sampled instead. 
In order to conform to the shape of 

the cells (see previous section ) , the 
sam~ling is chosen to be of the form 
s=a , j E 71., a E ~ 
u=n/3/aJ, n E 71., (3 E ~ (21) 

For the case a=2 an interesting 
interpretation can be given. Since s 
labels frequencies (the centers of the 
passing bands) the parameter j labels the 
"octaves". On the other hand the 
bandwidths go as 1/s so if one starts 
with a "mother wavelet" and one thinks of 
it as as musical note, say C, then the 
wavelet for j=l will correspond to a half 
note C' (C one octave higher), j=2 
corresponds to a quarter note C'' and so 
forth. For this reason a wavelet 
transform is like giving the "score" of 
the signal. 
Some heuristics 

Consider a microscope with point 
spread function ( in one d.i,Jnension) t ( x) 
and transfer function T(w)=t(w). 

An object V(y) = o (y-y
0

) will form 

an image t(y-y
0

) so the general image 

from ob~ect V(y) will be 
¢(x) = J t(y-x)V(x) dx (22) 

Next we consider a series of 
microscopes with point spread functions 
t(sx) where s > O. The parameter s 
controls the resolution, the higher s the 
better the resolution of the instrument. 

If we define i/J(x) by 

i/J(x)= t•( -x) ¢(x)= s- 112 WV(s,x). (23) 
The transfer function is, then 

T(w)= ~•(w) (24) 
so the wavelet transformation describes 
(except for multiplicative factors) the 
image of an object ~(x) with point 
spread function t(x)= i/J (-sx). 
Revealing edges 

Consider a step s(x) defined as 
s(x)=-1/2 for x<O and s(x)=l/2 for x>=O. 

It has the well known property that 
ds(x)/dx = o(x) 

Consider 
00 

h(x)=_l i/J(y) s(x-y) dy 

then tak£ng derivatives 

dh/dx =_l i/J(y) o(x-y) dy= i/J(x) 

so h(x)= f i/J(x) dx 

- 00 

(25) 

(26) 

meaning that at the edges the wavelet 
transform will produce an integral of the 
wavelet function. Edges can be emphasized 
by proper choice of wavelet. 
Scaling and shifting properties 

For some purposes it is useful to 
note that if the function f is changed so 
f(x) ------.f(x-b) 
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( 1) 

s2 

sl 

* 

[:] 

ul 

* 

u2 

Figure l. Illustration of the phase-space 
partition achieved by the discrete wavelet 
transform. The space is divided into 
unequal cells with the same area. 

Figure 2. The Mexican Hat shown in real 
space (a) and in reciprocal space (b). 

156 

then the transforms also change and 
Wf(s,u) - Wf(s,u-b). 
Similarly under a change of scale 
f(x) ----" f( AX) 
the transform changes as 

Wf(s,u) ---------~ Wf(s/A,UA) 
The mexican hat 

One of the most popular analyzing 
wavelets is the so called Mexican hat 
given by (except for normalization 
constants~ 

2 1/J(x)=(l-x )exp(-x /2) (27) 
It is probably popular because of 

the simplicity of its form, its 
continuity and differentiability 
properties and because it is is minus 
one times the second derivative of the 
Gaussian exp(-x 2 /2). It also has a smooth 
and fast decay at plus or minus infinity 
and is well localized in both real and 
reciprocal spaces. 

This function has the appearance 
shown in fig. 2-a (real space)and 2-b 
(reciprocal space, see below). 

Its Fourier transform is given by 

1/J(w)= w2 exp(-w 2 /2). (28) 
For small values of w, 

~(w)"" w
2

(29) 
indicating that the transform for small 
values of w/s behaves as a second 
derivative. For w in the passing band, 
the function and its transform are 
expected to be somewhat similar and for 
larger values of w/s the transform will 
attenuate the function strongly. 
Zooming 

Fr~m equation(l) 

Wf(s,u):l f(x)~ 1/J*(s(x-u)) dx 

00 

:l f(y/s)~ 1/J*(y-su) s- 1 dy 

00 

l -1/2 * 
: f(y/s) s 1/J (y-su) dy 

=s- 112 [f(y/s)* ~*(y) J(su) 
_s* 

(30) 

so one may fix 1/J and rescale f. In this 
s 

sense, taking the transform is like 
magnifying the object in a scanning 
electron microscope. One has a magnified 
image whose detail is modified by 
convolution with a point spread function 
( the shape of the beam in the SEM case). 
Bidimensional case. 

In 2 dimensions the transform can 
be defined generally as (Argoul et al. 
1990): 

Wf(A,u)):l f(x) 1/1*( <x-u,A(x-u)>) dx 

where A is a (positive definite) linear 
transformation and < > denotes the 
canonical inner product in R2

• 

Consequently W will contain, in general, 
two scale factors. 
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Figure 3. Example of edge enhancement by means of the wavelet transform. The image con­
sists of an array of circles to simulate a cluster. (a) original image; (b) processed 
image. 

Figure 4. Example of the use of wavelet transforms to obtain overall shape of an object. 
(a) original image; (b) processed image. 

For most of our applications we 
have found t~e particular case 

Wf(s, (u,v) )~l f(x,y) s 1/J* (s(x-u) ,s(y-v)) 

dx dy (31) 
to be useful. 

Results 

In order to assess the use of 
wavelet transforms in the digital image 
processing of micrographs, transforms 
were implemented by means of the "Mexican 
hat" and the corresponding C language 
code was produced. 
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Synthetic objects 
In figure 3-a a simulation 

cluster is shown together with 
wavelet transform 3-b. Here 

of a 
its 
the 
the 
the 

parameters (i.e the scaling) of 
Mexican hat have been adjusted so 
edges are clearly enhanced. 

If the wavelet is "spread", i.e. 
extended in space and concentrated in 
frequency, it results in an enhancement 
of the cluster as a whole (figures 4-a 
and 4-b); in this case the effect of the 
transform is similar to a "defocus" ( as 
can be expected from the discussion in 
the section on Some Heuristics) and the 
external shape of the cluster is enhanced 
at the expense of resolution. All this 
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has been discussed in greater detail in 
BeltrAn et al. (1991a, 1991b). 
Boundaries in catalysts 

In figure 5-a a high resolution 
image of a MoS

2
:Co catalyst is shown 

where hexagonal domains can be clearly 
seen. The noise has been reduced 
considerably in figure 5-b (very high 
frequencies have been severely 
attenuated) whereas at the same time 
there has been a substantial reduction of 
the background (since very low 
frequencies have also been severely 
attenuated by this band-pass filter). 
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F~gur~ 5. An array of antiphase bounda­
ries in a Mos2:co single crystal. (a) 
Original unprocessed image. (b) Processed 
image: the wavelet was chosen so as to 
attenuate very low and very high frequen­
cies. In real space, it means that the 
"width" of the wavelet was taken to be of 
the order of the smallest features of 
interest in the image (the boundary lines 
in this case). (c) Processed image with 
thresholding. 

If in addition the image is thresh­
olded (eliminating all contributions to 
the image whose intensity is less than .4 
of the maximum intensity), the resulting 
image (Fig. Sc) displays the domains more 
clearly. Further details can be found in 
BeltrAn et al. (1991a, b) and Jose-YacamAn 
and Chianelli (private communication). 
Back eflection diffraction patterns 

In the backreflection electron 
diffraction patterns (as the one in 
figure 6-a) one meets in its most acute 
form the problem of extracting the 
relevant information (in the form of 
diffraction lines in this case) which is 
immersed in a sea of noisy background. 

In Figure 6-b, the same pattern is 
shown after a wavelet transform; the 
lines are now clearly visible and if the 
image is thresholded, the image is still 
clearer (in the sense of allowing an 
easier visual determination of the 
location of the lines ) making it 
possible to measure distances and angles 
between lines. 

In general it is observed that best 
results are obtained by means of the 
sequence transform-thresholding (in this 
order). 
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a 

Figure 6. Electron backscattering diffraction pattern of a T-phase quasi-crystal. (a) 
Original unprocessed pattern. (b) Image after processing with the wavelet transform and 
thresholding. 

The reason for the improvement in 
this case is that the transform was 
behaving basically as a second derivative 
(see section on the Mexican hat). The 
background varies slowly (low 
frequencies) so it is strongly attenuated 
and the noise components are rich in very 
high frequencies that are also attenuated 
(band-pass filter). 
Small metallic particles 

The transform has also been found 
to produce interesting results when 
applied to the images of small metallic 
particles. In Fig.7-a a multiply twinned 
gold particle is shown ; notice that it 
consists of several different crystals 
with well defined boundaries. In fig 7-b 
the same particle is shown after 
transforming and in fig. 7-c a threshold 
has been applied. As before the 
boundaries are enhanced by the 
processing. 
Transforms of guasicrystals 

In all the previous applications 
the scale of the wavelet has been kept 
fixed because in the images the scale of 
the detail of interest (or the 
resolution) is determined by the specific 
needs (i.e. to show boundaries, for 
instance). 

However in many instances it is 
convenient to change the scale. This is 
the case for objects with details of 
interest at different scales, for this 
reason the wavelet transform is well 
suited to the study of fractals, 
turbulence and other phenomena with 
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self-similarity or scaling symmetries. 
Consequently it might be 

interesting to explore the use of the 
wavelet transform in the images from 
quasicrystals. As it is well known, the 
quasicrystals present self-similarity 
properties. There are certain scales 
(related to the golden mean) such that if 
one expands ( inflates) the quasicrystal 
by them, the resulting structure has 
points that match those of the original 
unexpanded structure. 

For this purpose a one -dimensional 
Fibonacci sequence given by 

X =a+T-l Int(n/T+/3) 
n 

(where Tis the golden mean, a and /3 are 
real constants specifying an overall 
translation and the phason variable 
respectively) was transformed with 
various scales. 

In figure 8 the transform is shown. 
The vertical axis represents the scales 
and the horizontal axis represents the 
position X in the Fibonacci sequence. 

n 

For very narrow wavelets the 
transform, as expected, follows the 
qusicrystal closely. When the scale is 
increased the transform still resembles 
the original image, but upon increasing 
the scale further a sudden point is 
reached where the transform has a very 
different appearance. This image 
corresponds to an inflation by ( l+T) of 
the original image as can be readily seen 
in the figure. The transform can be used 
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Figure 7. Multiply twinned particles of 
Au. (a) Original image; (b) image after 
wavelet transforming; (c) image after 
transforming and thresholding. 

to study the inflations of the 
quasicrystal! 

The reason for this behaviour is 
simple. As explained above, the transform 
returns images with a resolution given by 
the width of the analyzing wavelet. Since 
the sequence consists of an alternating 
array of short (S) and long (L) 
intervals, when the resolution reaches 
the scale of S the two points making S 
(Xn and Xn+l) can not be resolved any 

longer and in the image they are replaced 
by a single point. Thus the transformed 
quasicrystal is another quasicrystal in 
which every two positions making a short 
interval are replaced by a single 
position, simultaneously the positions 
corresponding to the long intervals are 
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Figure 8. Wavelet transform of a one­
dimensional quasi-crystal (Fibonacci se­
quence). The vertical axis represents the 
scales and the horizontal axis represents 
the position X

0 
in the Fibonacci sequence. 

comparatively weak. And this is 
e9uivalent to an inflation by l+c 
c. Notice that this is not the smallest 
inflation of the Fibonacci sequence. 

Conclusions 

It has been shown that many images 
can have specific features enhanced by 
means of the wavelet transforms. In 
particular edges and boundaries can be 
greatly enhanced. 

For the processing of diffraction 
patterns the wavelet transform offers 
distinct advantages. Since it behaves as 
a band-pass filter,one can filter the 
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slowly varying features of the background 
and at the same time filter the high 
frequency components typical of noise. 
This method of background subtraction is 
simple and gives as good results as the 
ordinary methods (such as polynomial 
fitting of background). 

A comparison of wavelet processing 
with standard Fourier processing has been 
presented in Beltran et al. (1991-a,b). 
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