1,257 research outputs found

    Period selection for minimal hyperperiod in periodic task systems

    Full text link
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Task period selection is often used to adjust the workload to the available computational resources. In this paper, we propose a model where each selected period is not restricted to be a natural number, but can be any rational number within a range. Under this generalization, we contribute a period selection algorithm that yields a much smaller hyperperiod than that of previous works: with respect to the largest period, the hyperperiod with integer constraints is exponentially bounded; with rational periods the worst case is only quadratic. By means of an integer approximation at each task activation, we show how our rational period approach can work under system clock granularity; it is thus compatible with scheduling analysis practice and implementation. Our finding has practical applications in several fields of real-time scheduling: lowering complexity in table driven schedulers, reducing search space in model checking analysis, generating synthetic workload for statistical analysis of real-time scheduling algorithms, etc.This work has been funded by the Spanish Government Research Office, project TIN2008-06766-C03-02 (RT-MODEL).Ripoll Ripoll, JI.; Ballester-Ripoll, R. (2013). Period selection for minimal hyperperiod in periodic task systems. IEEE Transactions on Computers. 62(9):1813-1822. https://doi.org/10.1109/TC.2012.243S1813182262

    Collective modes of a trapped ion-dipole system

    Get PDF
    We study a simple model consisting of an atomic ion and a polar molecule trapped in a single setup, taking into consideration their electrostatic interaction. We determine analytically their collective modes of excitation as a function of their masses, trapping frequencies, distance, and the molecule's electric dipole moment. We then discuss the application of these collective excitations to cool molecules, to entangle molecules and ions, and to realize two-qubit gates between them. We finally present a numerical analysis of the possibility of applying these tools to study magnetically ordered phases of two-dimensional arrays of polar molecules, a setup proposed to quantum-simulate some strongly-correlated models of condensed matter.Comment: v2: 13 pages, 8 figures (from 10 figure files). Matches published version in Appl. Phys. B, special issue "Wolfgang Paul 100

    Measuring molecular electric dipoles using trapped atomic ions and ultrafast laser pulses

    Get PDF
    We study a hybrid quantum system composed of an ion and an electric dipole. We show how a trapped ion can be used to measure the small electric field generated by a classical dipole. We discuss the application of this scheme to measure the electric dipole moment of cold polar molecules, whose internal state can be controlled with ultrafast laser pulses, by trapping them in the vicinity of a trapped ion.Comment: 13 pages, 6 figures. Substantially modified version, with 4 new appendices; matches published versio

    Hybrid quantum magnetism in circuit-QED: from spin-photon waves to many-body spectroscopy

    Get PDF
    We introduce a model of quantum magnetism induced by the non-perturbative exchange of microwave photons between distant superconducting qubits. By interconnecting qubits and cavities, we obtain a spin-boson lattice model that exhibits a quantum phase transition where both qubits and cavities spontaneously polarise. We present a many-body ansatz that captures this phenomenon all the way, from a the perturbative dispersive regime where photons can be traced out, to the non-perturbative ultra-strong coupling regime where photons must be treated on the same footing as qubits. Our ansatz also reproduces the low-energy excitations, which are described by hybridised spin-photon quasiparticles, and can be probed spectroscopically from transmission experiments in circuit-QED, as shown by simulating a possible experiment by Matrix-Product-State methods.Comment: closer to published versio

    Continuous matrix product states for coupled fields: Application to Luttinger Liquids and quantum simulators

    Get PDF
    A way of constructing continuous matrix product states (cMPS) for coupled fields is presented here. The cMPS is a variational \emph{ansatz} for the ground state of quantum field theories in one dimension. Our proposed scheme is based in the physical interpretation in which the cMPS class can be produced by means of a dissipative dynamic of a system interacting with a bath. We study the case of coupled bosonic fields. We test the method with previous DMRG results in coupled Lieb Liniger models. Besides, we discuss a novel application for characterizing the Luttinger liquid theory emerging in the low energy regime of these theories. Finally, we propose a circuit QED architecture as a quantum simulator for coupled fields.Comment: 10 pages, 5 figure

    Correlated hopping of bosonic atoms induced by optical lattices

    Get PDF
    In this work we analyze a particular setup with ultracold atoms trapped in state-dependent lattices. We show that any asymmetry in the contact interaction translates into one of two classes of correlated hopping. After deriving the effective lattice Hamiltonian for the atoms, we obtain analytically and numerically the different phases and quantum phase transitions. We find for weak correlated hopping both Mott insulators and charge density waves, while for stronger correlated hopping the system transitions into a pair superfluid. We demonstrate that this phase exists for a wide range of interaction asymmetries and has interesting correlation properties that differentiate it from an ordinary atomic Bose-Einstein condensate.Comment: 24 pages with 9 figures, to appear in New Journal of Physic

    Quantum Ratchets for Quantum Communication with Optical Superlattices

    Full text link
    We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments.Comment: Published version, 9 pages, 5 figure

    SSPFA: Effective Stack Smashing Protection for Android OS

    Get PDF
    [EN] In this paper, we detail why the stack smashing protector (SSP), one of the most effective techniques to mitigate stack bufferoverflow attacks, fails to protect the Android operating system and thus causes a false sense of security that affects all Androiddevices. We detail weaknesses of existing SSP implementations, revealing that current SSP is not secure. We propose SSPFA,the first effective and practical SSP for Android devices. SSPFA provides security against stack buffer overflows withoutchanging the underlying architecture. SSPFA has been implemented and tested on several real devices showing that it is notintrusive, and it is binary-compatible with Android applications. Extensive empirical validation has been carried out over theproposed solution.This work was partially funded by Universitat Politecnica de Valencia (Grant No. 20160251-ASLR-NG).Marco Gisbert, H.; Ripoll Ripoll, JI. (2019). SSPFA: Effective Stack Smashing Protection for Android OS. International Journal of Information Security. 18(4):519-532. https://doi.org/10.1007/s10207-018-00425-8S519532184Buchanan, W.J., Chiale, S., Macfarlane, R.: A methodology for the security evaluation within third-party android marketplaces. Digit. Investig. 23(Supplement C), 88–98 (2017). https://doi.org/10.1016/j.diin.2017.10.002Tian, D., Jia, X., Chen, J., Hu, C., Xue, J.: A practical online approach to protecting kernel heap buffers in kernel modules. China Commun. 1, 143–152 (2016)One, A.: Smashing the stack for fun and profit. Phrack, 7(49) (1996)Younan, Y., Pozza, D., Piessens, F., Joosen, W.: Extended protection against stack smashing attacks without performance loss. In: In Proceedings of ACSAC (2006)Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow Integrity. In: Proceedings of the 12th ACM Conference on Computer and Communications Security, Series CCS ’05, pp. 340–353. ACM, New York (2005). https://doi.org/10.1145/1102120.1102165Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing instruction addresses of legacy x86 binary code. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, Series CCS ’12, pp. 157–168. ACM, New York (2012). https://doi.org/10.1145/2382196.2382216Roglia, G.F., Martignoni, L., Paleari, R., Bruschi, D.: Surgically returning to randomized lib(c). In: Proceedings of the 2009 Annual Computer Security Applications Conference, Series ACSAC ’09, pp. 60–69. IEEE Computer Society, Washington (2009). https://doi.org/10.1109/ACSAC.2009.16Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming: systems, languages, and applications. ACM Trans. Inf. Syst. Secur. 15(1), 2:1–2:34 (2012). https://doi.org/10.1145/2133375.2133377Pappas, V., Polychronakis, M., Keromytis, A.: Smashing the gadgets: hindering return-oriented programming using in-place code randomization. In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 601–615 (2012)S. R. to Thwart Return Oriented Programming in Embedded Systems, Stack Redundancy to Thwart Return Oriented Programming in Embedded Systems, IEEE Embedded Systems Letters, vol. (first on-line), pp. 1–1 (2018)Moula, V., Niksefat, S.: ROPK++: an enhanced ROP attack detection framework for Linux operating system. In: International Conference on Cyber Security And Protection Of Digital Services (Cyber Security). IEEE (2017)Das, S., Zhang, W., Liu, Y.: A fine-grained control flow integrity approach against runtime memory attacks for embedded systems. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25, 3193–3207 (2016)Alam, M., Roy, D.B., Bhattacharya, S., Govindan, V., Chakraborty, R.S., Mukhopadhyay, D.: SmashClean: a hardware level mitigation to stack smashing attacks in OpenRISC. In: ACM/IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE), pp. 1–4. IEEE (2016)Kananizadeh, S., Kononenko, K.: Development of dynamic protection against timing channels. Int. J. Inf. Secur. 16, 641–651 (2017)Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: an efficient approach to combat a board range of memory error exploits. In: Proceedings of the 12th Conference on USENIX Security Symposium—volume 12, Series SSYM’03, p. 8. USENIX Association, Berkeley (2003). http://dl.acm.org/citation.cfm?id=1251353.1251361 . Accessed 18 Jan 2019Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.-R.: Just-in-time code reuse: on the effectiveness of fine-grained address space layout randomization. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 574–588. IEEE (2013)Kumar, K.S., Kisore, N.R.: Protection against buffer overflow attacks through runtime memory layout randomization. In: International Conference on Information Technology (ICIT). IEEE (2014)Oberheide, J.: A look at ASLR in Android ice cream sandwich 4.0 (2012). https://www.duosecurity.com/blog/a-look-at-aslr-in-android-ice-cream-sandwich-4-0 . Accessed 18 Jan 2019Zabrocki, A.P.: Scraps of notes on remote stack overflow exploitation (2010). http://www.phrack.org/issues.html?issue=67&id=13#article . Accessed 18 Jan 2019Saito, T., Watanabe, R., Kondo, S., Sugawara, S., Yokoyama, M.: A survey of prevention/mitigation against memory corruption attacks. In: 19th International Conference on Network-Based Information Systems (NBiS). IEEE (2016)Meike, G.B.: Inside the Android OS: Building, Customizing, Managing and Operating Android System Services, illustrated ed., P. Education, Ed. Pearson Education, vol. 1 (2018). https://www.amazon.com/Inside-Android-OS-Customizing-Operating/dp/0134096347?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134096347 . Accessed 18 Jan 2019Cowan, C., Pu, C., Maier, D., Hintongif, H., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang, Q.: StackGuard: automatic adaptive detection and prevention of buffer-overflow attacks. In: Proceedings of the 7th USENIX Security Symposium, pp. 63–78 (1998)’xorl’: Linux GLibC stack canary values (2010). http://xorl.wordpress.com/2010/10/14/linux-glibc-stack-canary-values/ . Accessed 18 Jan 2019Lee, B., Lu, L., Wang, T., Kim, T., Lee, W.: From zygote to morula: fortifying weakened ASLR on Android. In: Proceedings of the 2014 IEEE Symposium on Security and Privacy, Series SP ’14, pp. 424–439. IEEE Computer Society, Washington (2014). https://doi.org/10.1109/SP.2014.34Miller, D.: Security measures in OpenSSH (2007). http://www.openbsd.org/papers/openssh-measures-asiabsdcon2007-slides.pdf . Accessed 18 Jan 2019Molnar, I.: Exec shield, new Linux security feature (2003). https://lwn.net/Articles/31032/ . Accessed 18 Jan 2019Wagle, P., Cowan, C.: StackGuard: simple stack smash protection for GCC. In: Proceedings of the GCC Developers Summit, pp. 243–256 (2003)Etoh, H.: GCC extension for protecting applications from stack-smashing attacks (ProPolice) (2003). http://www.trl.ibm.com/projects/security/ssp/ . Accessed 18 Jan 2019Erb, C., Collins, M., Greathouse, J. L.: Dynamic buffer overflow detection for GPGPUs. In: IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pp. 61–73 IEEE (2017)Molnar, I.: Stackprotector updates for v3.14 (2014). https://lwn.net/Articles/584278/Shen, H.: Add a new option “-fstack-protector-strong” (2012). http://gcc.gnu.org/ml/gcc-patches/2012-06/msg00974.html . Accessed 18 Jan 2019Guan, X., Ji, J., Jiang, J., Zhang, S.: Stack overflow protection device, method, and related compiler and computing device, August 22 2013, uS Patent App. 13/772,858. https://www.google.com/patents/US20130219373 . Accessed 18 Jan 2019Backes, M., Bugiel, S., Derr, E.: Reliable third-party library detection in Android and its security applications. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Series. CCS ’16, pp. 356–367. ACM, New York (2016)Greenberg, A.: SC magazine: trojanized Android apps steal authentication tokens, put accounts at risk (2014). www.scmagazine.com/trojanized-android-apps-steal-authentication-tokens-put-accounts-at-risk/article/342208/Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security. In: Proceedings of the 20th USENIX Conference on Security, Series SEC’11, pp. 21–21. USENIX Association, Berkeley (2011) http://dl.acm.org/citation.cfm?id=2028067.2028088 . Accessed 18 Jan 2019Poll: How often do you reboot? (2014). http://www.androidcentral.com/poll-how-often-do-you-reboot . Accessed 18 Jan 2019Wang, H., Li, H., Li, L., Guo, Y., Xu, G.: Why are android apps removed from Google play? A large-scale empirical study. In Proceedings of the 15th International Conference on Mining Software Repositories, Series MSR ’18, pp. 231–242. ACM, New York (2018). http://doi.acm.org/10.1145/3196398.3196412Marco-Gisbert, H., Ripoll, I.: Preventing brute force attacks against stack canary protection on networking servers. In: 12th International Symposium on Network Computing and Applications, pp. 243–250 (2013)Petsios, T., Kemerlis, V.P., Polychronakis, M., Keromytis, A.D.: DynaGuard: armoring canary-based protections against brute-force attacks. In: Proceedings of the 31st Annual Computer Security Applications Conference, Series ACSAC 2015, pp. 351–360. ACM, New York (2015). http://doi.acm.org/10.1145/2818000.281803
    • …
    corecore