
 

UWS Academic Portal

SSPFA

Marco-Gisbert, Hector; Ripoll-Ripoll, Ismael

Published in:
International Journal of Information Security

DOI:
10.1007/s10207-018-00425-8

Published: 31/08/2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Marco-Gisbert, H., & Ripoll-Ripoll, I. (2019). SSPFA: effective stack smashing protection for Android OS.
International Journal of Information Security, 18(4), 519-532. https://doi.org/10.1007/s10207-018-00425-8

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Sep 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository and Portal - University of the West of Scotland

https://core.ac.uk/display/227579357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10207-018-00425-8
https://uws.pure.elsevier.com/en/publications/18d4e289-1d13-4a2f-ad4c-7e6b4fdbfee5


International Journal of Information Security (2019) 18:519–532
https://doi.org/10.1007/s10207-018-00425-8

REGULAR CONTRIBUT ION

SSPFA: effective stack smashing protection for Android OS

Héctor Marco-Gisbert1 · Ismael Ripoll-Ripoll2

Published online: 22 January 2019
© The Author(s) 2019

Abstract
In this paper, we detail why the stack smashing protector (SSP), one of the most effective techniques to mitigate stack buffer
overflow attacks, fails to protect the Android operating system and thus causes a false sense of security that affects all Android
devices. We detail weaknesses of existing SSP implementations, revealing that current SSP is not secure. We propose SSPFA,
the first effective and practical SSP for Android devices. SSPFA provides security against stack buffer overflows without
changing the underlying architecture. SSPFA has been implemented and tested on several real devices showing that it is not
intrusive, and it is binary-compatible with Android applications. Extensive empirical validation has been carried out over the
proposed solution.

Keywords Security · Buffer overflow · Stack smashing protector · Mobile devices · Android · Defenses

1 Introduction

The increase in the number of mobile devices relying on
the same operating systems, Android OS and iOS, brings
therefore, an increase in the exposition of operating systems
against the discovery of new vulnerabilities, and thus, the
possibility of using them against large-scale cyberattacks
by exploiting such vulnerabilities [1]. In this sense, it is
of paramount importance to keep revisiting and improving
their security mechanisms to respond to the always evolving
threats.

In this contribution, we focus our research efforts on
Android OS due to its open-source license rather than a
closed-source approach associated with iOS. Android OS,
developed by Google, is based on the Linux kernel with
some specific device drivers for mobile equipment and a ‘C’
library for embedded devices, namely theBionic library used
to allow developers to make use of the primitives exposed
by the operating system. Android provides a security model
for the execution of mobile applications where it is assumed
that the mobile equipment will run a variety of untrusted or

B Héctor Marco-Gisbert
hector.marco@uws.ac.uk
http://hmarco.org

Ismael Ripoll-Ripoll
iripoll@disca.upv.es

1 University of the West of Scotland, Paisley, UK

2 Universitat Politècnica de València, Valencia, Spain

partially trusted applications. Then, Android tries to achieve
isolation between applications by executing each application
in a separate process with a different User ID per applica-
tion and by making use of virtual memory addresses so that
every application sees a different confinement memory area
per application.

A weakness in the current security model architecture
for the execution of mobile applications in Android OS will
unveil vulnerabilities affecting all the versions of the operat-
ing system, all models of mobile equipment and all applica-
tions running in such operating systems and thus allowing
millions of mobile devices to be potentially exploited, to
be spied, to be used as potential attacking tool for cyber-
terrorism, just to name a few. This impact on the society
has been in fact our main motivation, and the main con-
tribution of this research work is exactly the identification
and empirical demonstration of such significant weakness in
the security model for the execution of mobile applications
in Android OS together with the proposal of an enhanced
memory protection architecture to protect mobile equipment
against such weakness, thus protecting final users against
cyberattacks exploiting such vulnerability.

The rest of the paper is organized as follows. Section
2 provides a detailed related work on memory protection
techniques in Android OS. Section 3 describes Android
memory architecture. Threats and vulnerabilities caused by
the Android framework in relation to stack smashing pro-
tection (SSP) technique are described in Sect. 4. Section 5

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-018-00425-8&domain=pdf
http://orcid.org/0000-0001-6976-5763
http://orcid.org/0000-0001-8592-0786


520 H. Marco-Gibert, I. Ripoll-Ripoll

describes the proposed modification to SSP to overcome
deficiencies identified, while the implementation of the new
technique (SSPFA) is presented in Sect. 6. Section 7 provides
an empirical evaluation of the proposed implementation. The
paper finishes with a discussion on the general applicability
of the proposed technique in Sect. 8 and some conclusions
and future work 9.

2 Related work onmemory protection
architectures

Buffer overflow attacks such as heap overflows [2] and stack
smashing have been one of the most dangerous threats to
the security model of operating systems. Stack smashing
attacks [3] consist of filling the stack buffer of a running
program with data supplied from an untrusted user so that
such user can corrupt the stack in such a way to inject exe-
cutable code into the running program and thus take control
of such process. This is one of the more reliable methods for
attackers to gain unauthorized access to a computer.

Several techniques have been developed to mitigate the
possibility of exploiting this kind of programming fault [3–
6]. Stack smashing protection (SSP), address space layout
randomization (ASLR) and No-eXecute (NX1) are widely
used in most systems due to their low overheads, simplicity
and effectiveness as effective ways to prevent such type of
attacks. In fact, when these techniques are correctly imple-
mented, they prevent or mitigate stack smashing attacks,
execution of return-2-x [7] and return-oriented programming
(ROP) [8–11] attack and code injection, respectively. Other
techniques such as Flow Control Integrity [12], SmashClean
[13] and Timing Channel Protection [14] have also been
proven effective.

Unfortunately, it is not always possible to implement these
techniques correctly. For example, ASLR [15–17] is only
partially implemented, i.e., not all memory areas are ran-
domized, including Android version 4.0 [18] and earlier, or
are randomized only at system boot, as it happens with Mac
OS and all versions of Android OS. With respect to SSP,
one of the main problems (even in systems where it is cor-
rectly implemented) is byte-by-byte [19] attack, explained
later. This research work is focused on the security anal-
ysis of SSP implemented in Android OS. Saito et al. [20]
provide a comprehensive survey of prevention techniques
against memory corruption.

Android applications are written in Java and executed
either in the Dalvik virtual machine (Android version< 4.4)
or in the Android Runtime (ART) (Android version ≥ 4.4).
The Android execution framework is composed of a set of

1 Also known as data execution prevention (DEP) , andWrite xor eXe-
cute (W ∧X).

applications, most of which are written in Java, which pro-
vide all kinds of high-level services to applications. SSP is
a low-level mitigation technique implemented at the ABI
(Application Binary Interface) level. In contrast to an API
(Application Program Interface), which defines structures
and methods that can be used at the software level, an ABI
defines the structures and methods used to access external,
already compiled libraries/code at the level of machine code.
Thus, it can only be applied to native code.AlthoughAndroid
applications are mainly written in Java, there are some parts
of them that execute native code via Java Native Interface
(JNI). In fact, many libraries are written in C/C++ and export
their services via JNI to Java applications to allow this bind-
ing between Java and C. Also, some application sections
inside of Java are written in C/C++ (and native code is gen-
erated) to overcome Java limitations. In Android, all these
native functions are part of the so-called Native Develop-
ment Kit (NDK) [21].

The first proposal of SSP was presented by Cowan et
al. [22]. SSP technique [23] is a compiler extension which
is implemented by: first, keeping out of the stack memory, a
randomly generated value referred as reference canary value.
Then, every time a new function protected by SSP is added
to the stack memory, a guard section of memory, generally
referred as frame canary, between the protected region of the
stack and the buffers used to store the local values of a pro-
gramming function. The value inserted in this guard is a copy
of the reference canary. Then, every time the execution of a
function is finalized, the value of the frame canary is checked
against the valueof the reference canary to determinewhether
the code has been exposed to a buffer overflow attack or not.
If their values match, then no alternation happens and thus
the return memory address stored in the stack can be used to
continue execution flow of the program; otherwise, the pro-
gram has been altered and thus SSPwill stop immediately the
execution of the program by raising the SIGABORT signal.
The full explanation of the state of the art in the design of the
canary guard is lately explained in Sect. 3.

Notice that the effectiveness of this SSP technique resides
vastly in how efficiently the management of such reference
canary value is performed in the security architecture. If
the management related to the generation of such reference
canary is not appropriate in a particular security architecture,
a technique that is known to be effective can provide a dan-
gerous false sense of security that can be easily exploited
by attackers. In fact, this weakness can remain latent for
a prolonged period, which in turn allows the attacker to
prepare multiple assaults and tools that effectively bypass
barriers that are generally considered as unbreakable (or
properly settled). This is exactly the main motivation of this
contribution where authors have demonstrated that the way
Android manages today the reference canary value within
its own security architecture makes this originally validated

123



SSPFA: effective stack smashing protection for Android OS 521

Fig. 1 Reference and frame canaries in the ARM architecture

and demonstrated technique weak and not suitable against
buffer overflow attacks. When canaries were introduced by
Cowan et al., they stated ‘if the canary word is completely
static, then it is very easy to guess’ and they also stated
‘these randomwords are then used as distinct random canary
words, one per function in the object code.’ SSP implemented
in the Android security model uses static canaries ignoring
the advice in Cowan et al. [22], and our proposal is recti-
fying this mistake. This is in fact the main finding of this
publication.

In terms of solutions to the vulnerability of the secu-
rity architecture of the Android OS against stack smashing
attacks, B. Lee et al. [24] proposed to replace the fork
model currently used inAndroidwhere all theAndroid appli-
cations are forked from a parent process by a fork+exec
security model. This approach is very secure, and it is in
fact used in highly secure products as OpenSSH [25]. They
tried to apply this concept to Android. Unfortunately, as
authors point, it has a prohibitive time overhead (more than
3.5 sec per launched application) and memory consumption
(more than 13 MB per application). The temporal overhead
is addressed using a pre-forked approach, which increases
slightly further the memory consumption. Probably, this was
the reasonwhyAndroid developers discarded such fork+exec
approach.

To the best of our knowledge, this contribution is the first
one of its kindwhere it has demonstrated that the whole secu-
rity architecture of Android OS is vulnerable against stack
smashing attacks, which it is an attack supposed to be miti-
gated nowadays, such as other operating systems, including
Linux OS which Android OS is based on, and thus affecting
to all applications, all Android versions and in consequence
all Android users. The identification of effective mitigation

techniques to protect Android users has been the main moti-
vation of our research work.

3 Overview of stack smashing protection
architecture

Figure 1 sketches the layout of a stack with two stack frames
(e.g., a function has called another function thus creating two
stack frames). The reference canary is stored in the data seg-
ment of thememoryofAndroidBionic library, and it has been
represented with a bird icon on the right side. Then, frame
canary guard has been also painted with a bird icon available
on each stack frame.With thismemory layout, the scalar vari-
ables cannot be overwritten due to a buffer overflow because
they are in lower addresses and buffers are typically over-
flown toward higher addresses. SSP only protects previously
saved stack frame pointer, if the code is compiled with it, and
return address.

The compiler emits extra code in the prologue and epi-
logue of each protected function for initializing the frame
canary and checking this value against the reference canary,
respectively. The value of the canary is chosen such that it
prevents, when possible, the effective exploitation of a buffer
overflow and detects the occurrence of an overflow.

Attending to these goals, four types of reference canary
values have been proposed:

– Terminator value: The value is composed of different
string terminators (CR, LF, NULL and − 1).

– Full random value: The value is randomly generated
during the initialization of the process and stored in a
global variable out of reach of the attackers; for exam-

123



522 H. Marco-Gibert, I. Ripoll-Ripoll

ple, in x86_64 it is stored in the TCB2 which resides in
a separated memory space (segment %fs). The attacker
needs to know the current value for building the exploit.
As far as the value is kept secret, the attack will be
prevented.

– Almost random value: The value is also randomly gen-
erated during the initialization and stored in a safe place,
but the first byte is set to zero. This way, overflows
caused by string handling functions, like strcpy(),
are blocked because the copy operation terminates at
the zero byte. Unlike the other types of canaries, this
can not be bypassed knowing its value, if the failure is
caused by a chain operation. This works in a similar man-
ner as the ASCII-armored [26] technique against ret2lib
attacks.

– Random XOR: are random canaries that when copied
into the frame canary it is XORed using a control data
register, instead of using a dedicated register, the stack
or the base register is usually used. In this way, once
the canary or the control data are modified, the frame
canary value is wrong, which gives additional protec-
tion, but increases the overhead as it involves more
operations.

Linux compilers (gcc and clang) use a full random word
or a random word with a byte set to zero. Terminator value
canaries can be trivially bypassed if the error is caused by
an incorrect non-string memory copy. Therefore, this type of
canaries is not used. Although XOR canary seems to bemore
effective because the value of the frame canary may be dif-
ferent on every function (depending on the control data used
to XOR), the effective protection is close to the full random
canaries [27]. XOR canaries are used in Visual Studio since
version 2003 and hardened versions of Linux. Regarding the
SSP implementation in the Android Bionic library, it uses
a fully random canary (that is, all bytes of the canary are
random values).

Initially, the canary frame guard was placed immediately
after the return address since it was the target of most attacks,
trying to alter such address using a buffer overflow attack to
allow the redirection of the execution flow of the running
program to another section of memory with the intention to
execute malicious code.

New attack strategies have been developed (see Sect. 4)
which have motivated some enhancements [28,29] over the
original proposal. As of GCC v4.7, the latest version while
writing this contribution, the stack smashing protector con-
sists of the following:

– Both return address and saved previous stack frame
pointer which are guarded by the frame canary;

2 TCB: Thread Control Block.

– Local variables which are reordered so that buffers are
located first3 (higher addresses) and below them the
scalar variables and the saved registers.

Since the value of canary is not a constant but a random
value is chosen when the program starts, that value (the ref-
erence canary) has to be stored somewhere in the program
memory or in a dedicated processor register if available.
In the ARM architectures, the reference canary is stored
in main memory by means of a global variable, called
__stack_chk_guard, while in x86_32 and x86_64 it
is stored in a different memory segment, %gs:0x14 and
%fs:0x28, respectively.

Regarding which functions (stack frames) are protected,
there are currently several options:

Only those with a local buffer (stack protector):
Only functionswith local arrays are protected.Data struc-
tures containing buffers and pointers are not protected.
Functions with local arrays are typically a small fraction
of all the program; for example, in the Linux kernel [30],
they represent the 2.81%.
All the functions (stack-protector-all): All the
functions, regardless the type and the number of local
variables, are protected. This option was added to over-
come the problem of data structures (and other tricks)
which was an important breach to the SSP. This strategy
is the most secure, but it has a non-negligible overhead.
Most functions (stack-protector-strong): In
2012, Google engineers [31] designed and implemented
a new option as a balance between security and perfor-
mance. All the functions that are prone to be exploited
by some kind of overflow abuse, not only to arrays,
are protected. Among other conditions, SSP is applied
on functions that meet any of the following conditions:
Any of its local variables address is taken as rhs4 of an
assignment or function argument, or it has a struct/u-
nion containing an array, or has register local variables.
According to Ingo Molnar [30], 20.5% of the Linux ker-
nel functions are protected.
Every block of code with a buffer: Recently, in 2013,
IBM [32] patented a method of splitting the code of a
function into code which contains string manipulation
operations (which is supposed to be prone to buffer over-
flows) and codewithout that behavior. The stackprotector
guard is used in the region with the string operation,
which is a clever way to reduce overhead on the stack
protector technique as well as to narrow the exposure

3 Without loss of generality, we will assume that the stack grows from
higher addresses to lower ones.
4 rhs: right- hand side.

123



SSPFA: effective stack smashing protection for Android OS 523

Fig. 2 Android execution
architecture

window. To the best of our knowledge, this option is not
implemented in any software.

Listing 1 shows the global variable used in Android under
ARM architecture to store the reference canary value. The
code is at the file libc/bionic/ssp.cpp of the Bionic
library.

... ...
035 #include "logd.h"
036
037 void *__stack_chk_guard =

0;
... ...

Listing 1 Android Management of the
reference canary in ARM
architectures

It is worth to remark that by default Android is compiled
with the “only those with a local buffer” GCC option to per-
form a selective protection of ART functions.

4 Analysis of the SSP in the Android
architecture

Figure 2 shows an overview of the security model imple-
mented in Android OS. Zygote is an important Android
process present in both Dalvik and ART security models,
used mainly to speed up application launch. It is initiated
at boot time by the Linux kernel to implement the security
architecture of the Android OS. It contains commonly used
shared libraries [33], application frameworks and the ART

runtime framework. The ART runtime framework provides a
sandbox environment where all the Android applications can
be executed. This runtime framework provides some classes
and resources that will be used by applications. Once Zygote
is initialized, it will wait for commands on a socket. When
a new application is requested to be launched, Zygote forks
itself creating a new process and loading the application code
in the prewarmed-up environment. Since most resources are
already loaded in Zygote, the application can immediately
begin executing. Thisway, the operating system can have sig-
nificantly lower load times for the new applications, which
is critical in low-performance execution environments such
as mobile phones. Then, thanks to the copy-on-write mech-
anism, most of the system resources are shared between all
the running applications until they are modified. Therefore,
all processes forked from Zygote (i.e., all Android Appli-
cations) use the same copy of system classes and libraries.
So, the Android architecture is based on the fact that Zygote
is the father of all Android applications. Therefore, Zygote
memory is copied to all applications. Thus, since it keeps
the reference canary value in a global variable, the same
reference canary value will be shared by all Android user
applications running in the system. This characteristic has
the undesirable effect that any local Android application
knows the canary value of any other application. This is, in
consequence, a potential vulnerability affecting all Android
systems.

This vulnerability could be exploited by several different
attack vectors. It is not the intention of this publication to
provide all the possible vectors that can exploit the discovered
vulnerability. However, in order to validate our claims, two
different types of attack vectors have been analyzed in detail
as suitable techniques to leak the value of the reference canary
in Android OS: direct observation and brute force attack.

123



524 H. Marco-Gibert, I. Ripoll-Ripoll

Direct observation: the value of the canary is directly read
from the stack of the target process, or another place
where is was copied.

Brute force attack: Different canary values are tried until the
correct one is found. The attack known as byte-by-byte
is an especially effective kind of brute force.

4.1 SSP direct disclosure

Every application running on an Android phone knows the
system’s reference canary value, and so attackers can add
a simple but useful ‘Trojanized’ application [34] (examples
of such apps are lantern, notes takers or simple but appeal-
ing games) to ‘Google Play,’ which sends to the attackers
the value of its own canary value, jointly with other useful
information.

Information can be sent directly from within the Tro-
janized application to the command and control [35]. But
there are more subtle ways to do it, for example, as a bug
report which contains a stack dump along with other process
information.

Note that attackers can introduce legal applications which
do not cause any damage to the system or try to launch an
attack on other applications but just obtain local secret infor-
mation. These applications only access their own data and
do not require highly suspicious phone permissions. Some
people care about the permissions granted to an application,
but in this case no Android permission other than Internet
communication is required to release the system’s reference
canary value.

4.2 SSP brute force attacks

In order to build a brute force attack, four conditions must
be met:

1. Attacker must guess the secret.
2. Attacker has to be able to decide whether it is a correct

or an incorrect guess.
3. The guess can be repeated as many times as needed by

the attacker.
4. The secret valuemust always be the same. That is, it must

not change during the attack; otherwise, tried and failed
values cannot be discarded.

Let us focus on the first two conditions. Let us assume
that a pure Java-based Android application will not produce
any bug in the memory management to allow an attacker to
exploit a buffer overflow unless there is a bug in the Java VM.
However, a lot of Android applications are not pure Java-
based application and rather they have been implemented
usingAndroidNDKtoquickly port Linux-based applications
into Android. Then, only graphical interfaces are created

using Java and thus compiled applications are linked using
JNI. In this scenario,where native application is implemented
in C and thus it requires to deal with memory management,
a buffer overflow vulnerability could be easily exposed by
buggy code. This buffer overflow can be remotely exploited
if such application provides, for example, a TCP connection
and it is implemented using the traditional approach where a
new process is created to attend each of the requests received.
There are lot of these applications in the Google Play such as
SSH server application, remote desktop applications, mouse
controllers, Wi-Fi-sharing applications, file-sharing applica-
tions, messaging applications, and many more.

Then, if any of these applications is vulnerable against
buffer overflows, that vulnerability can be easily exploited by
overriding the value of the stack canary frame value. Then,
all the combinations can be tried so that the first condition
is fulfilled. Then, to see whether the attempt is correct or
not, the fact that an incorrect canary value will produce an
abort() library call that will abort abruptly the current TCP
connection can be used. However, if the stack canary frame
value overwritten is correct, then the TCP connection will
remain open and this will allow the attacker to know that this
is the correct value of the system reference canary.

The third condition is typically given on how a traditional
socket handle is implemented, usually forking a new process
to attend a new client request. In this case, the main server
does not directly attend a client requests, but instead it forks
a child processes which are in charge of attending to clients.
Each child inherits the socket from the client as well as most
of the parent’s state, which includes the reference canary
value. Then, when the buffer overflow is attempted, only the
fork() process is aborted but the parent still works and then a
new request will produce the forking of a new process (with
the same canary value).

Regarding condition four, considering that most users
reboot a phone only when it is strictly necessary [36] (per-
haps due to flight regulations, when installingmajor software
releases, system hangs, runs out of battery, etc.), applications
have the same reference canary value for very long periods
of time, which increases exposure time.

Depending on the granularity of how the attacker can flood
the buffer (word or byte overflow), there are two different fla-
vors of the brute force attacks that can be applied to Android
applications:

Full brute force: The frame canary word is overwritten on
each trial. If the guessed word is not correct, the appli-
cation detects the error and aborts. The guessed value is
discarded, and then the attacker proceeds with another
value until all possible values have been guessed. The
number of trials to bypass the SSP in a 32-bit Android
ARM system is 232

2 = 2, 147, 483, 648 on average.

123



SSPFA: effective stack smashing protection for Android OS 525

Byte-by-byte: This is a dangerous kind of brute force attack
which consists of overwriting only one byte of the canary
in each trial until the value of the target byte is found; the
remaining bytes of the canary are obtained by following
the same strategy. The system can be defeated with, at
most, 4×256

2 = 512 trials, which is a fairly low number.

4.3 Summary of weaknesses

The execution environment in Android applications jeopar-
dizes the effectiveness of the standard SSP technique.

– Weak security control in the Google Play store makes
it relatively easy to upload malicious applications [37],
which in turn are installed by careless users. Therefore,
contrary to desktop and server systems, local attacks on
smart phones (specially on Android) represent a main
attack vector.

– Current Android SSP implementation is completely use-
less against local attacks, because the canary value is not
a secret to local applications.

– Zygote as well as other system applications has the same
broken SSP implementation.

– Remote attacks thatmust bypass theSSPona target appli-
cation may first attack the weakest installed application
to obtain the canary value, and then use the obtained
value against the real target application. This attack strat-
egy makes exploitable some applications that otherwise
would not be vulnerable.

– There is a very long exposition time. Once an attacker
obtains the canary value, they can use it if the system is
not rebooted, which may be a fairly long period of time.

– The obtained canary value can even be used against appli-
cations installed after the canary value has been leaked.

The reader may notice that once the system reference
canary value is known by the attacker, any buffer overflow
bug available in any of the applications launched by Zygote,
i.e., any running Android application, can be used to execute
malicious code by altering the return address of the stack.

5 SSPFA: enhanced SSP for the Android
architecture

The section proposes a novel memory protection architec-
ture SSPFA for Android to provide enhanced security in an
operating system.

SSPFA relies on the same SSP infrastructure as already
implemented by Bionic and GCC, but the code of the Zygote
application is modified to renew the reference canary on the
child process right after the new process has been created
(forked). It is important to note that the value of the reference

canary of Zygote is left unchanged, and only the reference
canary of the forked/cloned processes is modified.

In order to understand why this modification does not
break the normal operation of the application and allow back-
ward compatibility to all the Android releases, the following
observations shall be considered:

– In Zygote, after a fork() operation, the child process
executes a flow of codewhich endswith an explicit call to
the exit() call; i.e., the child process does not return to
the main flow of control but jumps to execute the specific
child code, which in turn ends with a call to exit().

– There is a single reference canary per process which is
stored in a protected/separated area and initialized during
process start-up.

– Integrity (i.e., checking the frame canary against the ref-
erence canary) is only done at the end of each function (or
block of code), immediately before the returning instruc-
tion.

– Only the value of the frame canary of the current stack is
checked against the reference canary.

The point in the Zygote application where the canary is
changed defines a ‘point of no return.’ To be more precise,
once the reference canary has been changed for the fork
thread, any attempt to return from such fork thread to Zygote
will not trigger a match between the stacked frame canary
value and the reference canary value and thus the process will
be aborted. This is a normal behavior of any of the Android
applications since they do not need to return the execution
pointer to Zygote once they are being executed and thus there
is not any implication in terms of the flowcontrol of the native
Android applications.

Figure 3 shows graphically the division of the stack once
the reference canary has been changed. As the reader can
see, all the stack frames associated with the Zygote appli-
cation keep the same reference canary value and then in the
moment, Zygote creates the fork to allocate the application,
the newly inserted function renewssp() is invoked causing a
point of no return for those applications. It makes that every
application has a different reference canary value and thus
all the exploited that make use of this vulnerability can be
mitigated.

Non-local jumping (i.e., setjmp/longjmp) is another form
of control flow which disrupts the normal execution of a
program. It is typically used as an exception mechanism to
jump or restore back multiple levels of function calls to con-
tinue from an initial safe state. Since longjmp() code does
not check the stack integrity of the current and the destina-
tion functions, it can be safely used after a reference canary
change. However, care must be taken if the destination frame
of the destination function (or the previous stacked frames)
contains frame canaries with the old value. The way to solve

123



526 H. Marco-Gibert, I. Ripoll-Ripoll

Fig. 3 Application active stack

this problem involves storing the value of the current refer-
ence canary when the setjmp() is called, along with the
rest of environment information, and then restoring the ref-
erence canary to its original value when the longjmp()
is later invoked. The value of the reference canary shall be
considered a part of the execution context, and since it is not
guaranteed to be constant throughout the execution of the
process, it should be stored/restored when needed.

6 Implementation

This section described the specific implementation details
performed in the Android platform to validate the proposed
SSPFA memory protection architecture.

6.1 Application launch

There are three phases involved in launching a new process in
AndroidOS: (1) process creationwhich creates the structures
in memory to allocate the process, (2) application binding
which associated the application compiled code with such
process structures and 3) flow bypassing which passes the
flow control to the application.

SSPFA implementation has been focus on the first phase
(see Fig. 4). It is where the new application and the Zygote
code depart from each other and where the reference canary
value should be renewed. During this first phase, the Android
ActivityManager sends to Zygote a request to cre-
ate a new process via a connection socket. Then, Zygote
forks a new process and instantiates the ActivityThr-

Fig. 4 Creation sequence of Android applications

ead object, which starts specific application by calling the
onCreate() function, which is the first call of the entire
lifetime of the activity. We are only interested in the path
of code executed from the fork() to the beginning of the
application code.

These code sequences are executed once on the call
sequence (by the parent process) and twice when returning
(both the parent and the child process).

A detailed analysis of the code of these two sequences of
calls shows that none of these functions is SSP protected,
because they do not declare any local buffer. Therefore, it
is safe to change the reference canary at any point dur-
ing the execution of this sequence. In the case that any
of them are protected by a canary, due to a future change
in Android compilation options (e.g., compiler flags are
changed to the more secure stack-protector-all or
stack-protector-strong5 flag), then they shall to be
compiled with the no-stack-protector flag. A simple
modification of the build scripts would fix this issue.

Once started, the application acts as a server that executes
callbacks, and so parent functions are never returned from
them. This behavior can be viewed as if there are two sepa-
rate stacks—as shown in Fig. 3. The upper part of the stack
contains stack frames with the old canaries, and the bottom
part is the live stack of the application, which uses the new
canary.

6.2 Application termination

During the normal execution of an Android application, the
functions of the old stack are never returned from them. We
analyzed how the applications terminate, to find out whether
the application returns to the old functions or not.

Processes are activity containers, and their creation or
destruction is controlled by the kernel. Android’s execution
model does not consider the termination of an application by
calling exit() explicitly, and its full life cycle is beyond the
scope of this work, but for our purposes it is enough to know
that processes can be terminated in either of the following
two modes:

5 stack-protector-strong. is still a feature not available in
the stable version of the GCC compiler, as of writing this paper.

123



SSPFA: effective stack smashing protection for Android OS 527

(a) An application can call the method Process.killPro-

cess() if the process is part of the application, or it can
be killed by others if it has the ‘android.permission.-
KILL_BACKGROUND_PROCESSES’ permission.

(b) Some versions of Android used a queue that keeps track
of which applications have not been used. If theOS starts
to run out of memory, it will kill an application (accord-
ing to some metrics).

In both cases, the process ends by means of a signal. It
does not return to any saved stack/environment, which meets
SSPFA requirements.

6.3 Exception handling

Although Android is compiled using the C++ compiler, the
code is mainly ‘C’-compatible. Fortunately, the exception
handling of C++ (i.e., try–catch blocks) is not supported
by the Bionic library, which forces one to check errors
and exceptions, by using explicit conditional constructions.
Therefore, the stack is never unwound, due to a raised excep-
tion. This restriction causes the native code of Zygote (which
is affected by the SSPFA) to be very procedural and sequen-
tial. Also, there are no calls for the setjmp/longjmp functions.
On the other hand, the Java side of Zygote never checks the
stack frame canary value against the reference so that Java
exception handling is compatible with the SSPFA.

6.4 Modifications to Zygote

Once the impact of SSPFA on Android has been analyzed,
the implementation is straightforward. We implemented the
SSPFA for both Android 4.2 Jelly (with Dalvik VM security
model) and Android 7.0 Nougat (with ART security model)
as a proof of concept. We chose these versions of Android to
cover both, Dalvik and ART.

The first step involves defining or giving access to
a function which changes (re-randomises) the reference
canary. We can reuse the already implemented function
__guard_setup(), which initializes the reference canary
with a random number from /dev/urandom. Rather than
exporting this function, we preferred to export a dedicated
function (called renew_ssp()), for clarity.

The code added to the mitigate the static reference
canary required only one call to renew the reference canary
(renew_ssp()) in the function forkAndSpecialize

Common() as shown in listing 2.
The function forkAndSpecializeCommon() is called

from the functions forkSystemServer() and forkAndSpe-
cialize(). These functions are used to launch new children
for systemservices andgeneral-purpose applications, respec-
tively.

6.5 Implementation discussion

The modifications introduced by the SSPFA are not archi-
tecture dependent, so there are no restrictions on using our
proposal on other hardwares supported by Android, such as
MIPS or x86.

A key implementation issue is the source of random num-
bers. The function __guard_setup() reads four bytes from
the/dev/urandomdevice.Urandom thenproduces anunlim-
ited stream of random bytes, using a pseudo-random number
generator, based on the internal entropy pool of Linux. There-
fore, the four bytes of entropy consumed per application are
not a problem at all. Also, we need to note that this is the
default consumption rate on conventional systems, where
applications are launched using the fork()+exec() pair.

This implementation exports the renew_ssp() symbol.
This way, any native application compiled against the new
library will be able to call that function at will. This func-
tion does not receive any parameter from the user, so it is
impossible to reset (or set to a known value) the value of the
reference canary. Therefore, security is not vulnerable when
renewing the value of the canary at any moment during the
execution of the process, as long as the already stacked stack
canaries are not checked. A more general discussion about
how and why to change the reference canary can be found
in [38].

It is important to note that the old reference canary was
used intensively by Zygote before forking. That value was
pushed and popped from the stack multiple times while call-
ing and returning from functions. Therefore, the stack of the
child may still contain a copy of that value. These garbage
values may reside in any location on the stack (downward
or upward) and may be observed by a malicious application.
Since Zygote does not change its own reference canary, the

490 static pid_t forkAndSpecializeCommon
(...)

491 {
... ...
553 dvmDumpLoaderStats("zygote");
554 pid = fork();
555
556 if (pid == 0) {
557 int err;
558 /* The child process */
559
560 #ifdef HAVE_ANDROID_OS

+++ renew_ssp();

561 extern int
gMallocLeakZygoteChild;

562 gMallocLeakZygoteChild = 1;
... ...
672 return pid;
673 }

Listing 2 Zygote.cpp

123



528 H. Marco-Gibert, I. Ripoll-Ripoll

Table 1 Reference canaries with SSP and SSPFA

App. Name Process Name SSP Canaries SSPFA Canaries

Z
yg

ot
e
64

-b
it

Zygote64 zygote64 0xed82de32a74f858e 0x542a6326d3289ad1

System system server 0xed82de32a74f858e 0xe5f7ef6577cdb8a5

Phone App com.android.phone 0xed82de32a74f858e 0x61c373b477f5c0a6

Media App com.android.media 0xed82de32a74f858e 0x75c8652655763a77

MMS App com.sec.imsservice 0xed82de32a74f858e 0x9c3d7367eb60477d

Google Talk App com.google.android.talk 0xed82de32a74f858e 0x7852ee0cd708407d

Canlendar App com.android.calendar 0xed82de32a74f858e 0xa3b77cd321d32f3d

... ... ... ...

Z
yg

ot
e
32

-b
it Zygote(32) zygote 0x62650890 0x92342d21

Chrome App com.android.chrome 0x62650890 0x7ad32388

Bluetooth App com.android.Bluetooth 0x62650890 0xb7b21078

... ... ... ...
C
o
p
i
e
d

C
o
p
i
e
d

R
a
n
d
o
m
i
z
e
d

R
a
n
d
o
m
i
z
e
d

malicious application may be able to read the current canary
of Zygote, albeit not the reference canary of the rest of the
applications. The solution to this issue is to also change the
value of the reference canary on the Zygote after a new pro-
cess has been created. An analysis of how and where the
canary of the Zygote shall be changed is beyond the scope of
this paper, but we shall mention here that it can be done by
following a similar approach to the one used to protect the
applications.

Another interesting aspect to consider regarding the sim-
plicity of the implementation is that it does not change the
logic of Zygote, which greatly simplifies the maintainability
on future versions.

7 Evaluation

The following aspects were evaluated: (1) the correctness of
the modification, (2) overheads, both spatial and temporal,
(3) portability and (4) effectiveness.

The correctness of the implementation was evaluated by
running the system and reading the values of the canaries
for the Android applications in both the original system and
the one modified with the SSPFA. An overhead is only cre-
ated because of the cost of reading four random bytes during
application launch, and there are zero overheads during the
execution of the application.

The evaluation of SSPFA, i.e., its effectiveness, was ana-
lyzed analytically, by comparing the operation of the current
implementation with the new SSPFA. A detailed evaluation
of the stack guard technique is beyond the scope of this paper.

7.1 Verification of the implementation

To show the feasibility of our proposal, a modified version of
Android 4.2 and Android 7.0 has been built which includes

the SSPFA. The implementation has been tested by reading
the values of the reference canaries on the original version
of Android and then on the modified version. The value of
the reference canary can be read directly from the memory
of the process, through the /proc/ < pid > /mem.

In Android 4.2, the reference canary is a global variable
in the Bionic library, named __stack_chk_guard. In our
example, it is located at the offset 0x4b228. In Android 7.0,
(in fact, from KitKat 4.4.4_r1 onward), the initialization of
the canary has been moved into the Bionic core constructors.

The results relating to executing the inspector program in
Android 7.0 are listed in Table 1. As expected, all of Zygote’s
children have the same reference value on a standard system
but different values when using the SSPFA modification. It
is worth to remark that in 64-bit ARM architectures there
are two different zygote parent processes, one to fork 32-bit
applications and another one to fork 64-bit applications and
both are affected by the vulnerability as shown inTable 1. The
main difference is the size of the frame canarywhich is 32 bits
and 64 bits, respectively. The execution inAndroid 4.2 shows
similar results but only with the 32-bit zygote architecture.

Table 1 also shows the canaries of native processes (those
not launched by Zygote). In this case, the canaries are dif-
ferent because they are processes with a new binary image
loaded by an exec() library call.

7.2 Memory footprint

The implementation of the SSPFA relies on the already exist-
ing infrastructure of the SSP and needs neither global nor
local stack frame additional storage. Our implementation
applies and exports the renew_ssp() function, which is just
a proxy to __guard_setup() from bionic and adds a single
call to this function in Zygote code. The function that has
been modified in Zygote is not on the executable itself but in
the shared library libdvm.so.

123



SSPFA: effective stack smashing protection for Android OS 529

Table 2 Memory overhead (in bytes)

Library SSP SSPFA Overhead

ARM

Bionic 297,604 297,604 0

ART 710,280 710,280 0

MIPS

Bionic 541,824 541,824 0

ART 1,342,944 1,342,948 4

x86

Bionic 690,567 690,542 25

ART 1,393,859 1,393,884 25

The amount of code added is so small that the default
optimization of function alignment to a 32-byte/64-byte
boundary may hide the size of this additional code. Table 2
shows the different sizes of the libraries when compiled for
ARM, MIPS and x86 architectures. As expected, it is negli-
gible.

The size of the program is not increased at all in the ARM
processor, due to alignment padding, which means that the
SSPFA technique can be used on a mobile phone with zero
memory overheads. And in the case of the x86, the global
cost of the SSPFA is a total of 25 bytes. Note that this value
is independent of the number of applications executed in the
phone.

7.3 Temporal overhead

The temporal overhead is caused by the call to renew the
canary on the child process after the fork operation, which is
called only once per application. The rest of the execution of
the application has zero overheads.

It is a continuously evolving sector in which devices are
surpassed in a matter of months. It is therefore pointless
to try to find a representative device for running perfor-
mance tests, so we selected three phones according to their
availability, namely Samsung Galaxy S4 mini and Huawei
U8650Sonic. Figure 5 summarizes the average cost of renew-
ing the reference canary calling 100,000 times the function
renew_ssp() on several devices against the cost of creat-
ing a new process using the fork() syscall.

Although the S4-mini is faster than the Huawei U8650, it
took 38 µs versus the 26 µs of the Huawei U8650, because
the kernel on that platform implements the SELinux facility,
which adds an extra overhead to each system call, including
the tree calls (open() , read(), close()) needed to read
from /dev/urandom.

The cost of the SSPMD is approximately between 11 and
38µswhich is almost negligible comparedwith the start time
of an Android application. It clearly shows that the overhead

Fig. 5 Overhead of renewing the canary reference (µs)

of the usage of our proposed solution is really negligible and
scales up significantly. Notice that the times shown are for
calling 100,000 times the renew of the canary value and only
one time is required to deploy our solution.

7.4 Portability

Although the implementation of the SSP is highly processor
and compiler dependent, the SSPFA is not. Fortunately, nei-
ther the compiler nor the supporting library functions have to
be modified, as all code modifications have been done in ‘C’
and in the generic part of the libraries. No platform-specific
code has been added. Therefore, SSPFA is fully available to
current platforms (ARM,MIPSandx86) andwill be automat-
ically available on new porting. Obviously, this transparency
in the implementation greatly simplifies the maintainability
on new releases for the same platform. SSPFA does not break
any assumption or impose complex requirements or limita-
tions on the Android architecture.

The only limitation is that once the reference canary
has been changed, it is not allowed to return from previ-
ous stacked functions, if those functions check the canary. It
should be considered that it is extremely rare to return back
to the parent code after a fork() operation, and as far as the
authors know, child processes execute another flow of code
which always ends with a call to exit(). In order to validate
this claim,we conducted an experimentwhich involvedmod-
ifying the implementation of the Glibc fork(), to always
renew (on the child) the canary. A complete Ubuntu 13.10
distribution, using this library, was used seamlessly.

Therefore, we can consider that the restriction required
by SSPFA— that child processes must not return to parent
functions—is not a limiting or an unacceptable requirement,
because it is the normal default behavior of all analyzed appli-

123



530 H. Marco-Gibert, I. Ripoll-Ripoll

Table 3 Android SSP versus
SSPFA summary

Threat/issue SSP SSPFA

SSP full brute force attack: Yes No

SSP byte-by-byte attack: Yes No

ASLR brute force (on stack): Yes No

Direct disclosure bypasses: All applications Only the affected application

Local attacks are: Trivial Same as remote

Canary exposed until next: Reboot Application relaunch

cations. Table 3 summarizes in a fewwords the achievements
of the SSPFA with respect to the current implementation.

8 Discussion

It can be argued that Android applications are not native
applications but are instead byte code interpreted. Unfor-
tunately, Android applications use native code through JNI.
Note that the SSP technique is only applicable to native code;
in fact, many libraries are written in C/C++ and export their
services via JNI to Java applications. Some application parts
arewritten inC/C++, to overcome Java limitations, for exam-
ple to access system services that are not available otherwise
(for instance, to interact with POSIX pseudo-terminals), to
speed up critical parts or to reuse existing C/C++ code. SSP
protection takes place in all native code used by Android
applications.

Another aspect to consider is the applicability of the
SSPFA. Although it may seem that the code where SSPFA
can be usedmustmeet very specific and somewhat odd condi-
tions, a deep analysis of the code involved in how the fork()
syscall is typically used reveals that most real applications
meet those conditions by default. That is, the SSPFA can be
used with minor modifications to Zygote, because it has been
coded following standard programming patterns.

A solution to use SSPFA in every code, regardless the
way the stack is used by children processes, was proposed
by Petsios et al. [39]. The technique, called DynaGuard, per-
forms a per-thread runtime bookkeeping of all the canaries
that are pushed in the stack during execution of each thread.
The buffer to store the frame canaries addresses is located
in the heap, out of reach of the attacker. Unfortunately, the
temporal overhead can be as high 3.2x, as pointed out by
the authors. This high overhead is only acceptable when the
security of the application is a must, and so, it is not practical
for mobile applications.

In [38], the authors carried out an experiment to test the
impact of the more general RAF-SSP technique on a full
desktop system. The fork() function of the Glibc library
was replaced by a custom fork() which always renews
the reference canary on all children processes. A complete

Linux distribution, using the modified library, ran smoothly.
We cannot conclude that the RAF-SSP technique could be
applied as a simple drop-in replacement for the fork, but
it is very likely that a simple inspection of the code—and in
some cases, a small modification—would be sufficient for its
use.

Regarding the GNU GCC suite, Google engineers imple-
mented the stack-protector-strong, which represents a
balance between performance and coverage.

The SSPFA technique can be considered as another defen-
sive measure which can be included in software, in an
analogous way to other measures such as drop privileges,
assertions and data canonization.

9 Conclusions

In this paper, we have detailed why the stack smashing pro-
tector (SSP), the most widely and effective technique used to
mitigate attacks, fails on Android, the operating system used
widely around the world, causing a false sense of security
affecting millions of devices.

We detailed all weakness of current SSP in real attacks
revealing that current SSP is not secure.WeproposedSSPFA,
the first effective and practical SSP for IoT Devices. SSPFA
can provide security against stack buffer overflows without
changing the underlying architecture.

We showed that the SSPFA prevents attacks against stack
smashing protector. These core protection techniques are
used to prevent modern attacks like BROP and Offset2lib.

We have implemented and tested the SSPFA on several
devices, showing that it is not intrusive and that it is binary-
compatible with all current and future Android applications.
Applications do not need to be upgraded to benefit from the
SSPFA protection. Contrarily to previous solutions that are
not in use because they break the shared memory base con-
cept used by zygote, SSPFA introduces zero temporal and
spatial overhead which matches the requirements needed in
the kernel space.

Funding This work was partially funded by Universitat Politècnica de
València (Grant No. 20160251-ASLR-NG).

123



SSPFA: effective stack smashing protection for Android OS 531

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Buchanan, W.J., Chiale, S., Macfarlane, R.: A methodology for
the security evaluation within third-party android marketplaces.
Digit. Investig. 23(Supplement C), 88–98 (2017). https://doi.org/
10.1016/j.diin.2017.10.002

2. Tian, D., Jia, X., Chen, J., Hu, C., Xue, J.: A practical online
approach to protecting kernel heap buffers in kernelmodules.China
Commun. 1, 143–152 (2016)

3. One,A.: Smashing the stack for fun andprofit. Phrack,7(49) (1996)
4. Younan, Y., Pozza, D., Piessens, F., Joosen, W.: Extended protec-

tion against stack smashing attacks without performance loss. In:
In Proceedings of ACSAC (2006)

5. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow
Integrity. In: Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, Series CCS ’05, pp. 340–
353. ACM, New York (2005). https://doi.org/10.1145/1102120.
1102165

6. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring:
self-randomizing instruction addresses of legacy x86 binary code.
In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, Series CCS ’12, pp. 157–168. ACM,
New York (2012). https://doi.org/10.1145/2382196.2382216

7. Roglia, G.F., Martignoni, L., Paleari, R., Bruschi, D.: Surgically
returning to randomized lib(c). In: Proceedings of the 2009 Annual
Computer Security Applications Conference, Series ACSAC ’09,
pp. 60–69. IEEE Computer Society, Washington (2009). https://
doi.org/10.1109/ACSAC.2009.16

8. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-
oriented programming: systems, languages, and applications.ACM
Trans. Inf. Syst. Secur. 15(1), 2:1–2:34 (2012). https://doi.org/10.
1145/2133375.2133377

9. Pappas, V., Polychronakis, M., Keromytis, A.: Smashing the gad-
gets: hindering return-oriented programming using in-place code
randomization. In: 2012 IEEE Symposium on Security and Privacy
(SP), pp. 601–615 (2012)

10. S. R. to Thwart Return Oriented Programming in Embedded Sys-
tems, Stack Redundancy to Thwart Return Oriented Programming
in Embedded Systems, IEEE Embedded Systems Letters, vol. (first
on-line), pp. 1–1 (2018)

11. Moula, V., Niksefat, S.: ROPK++: an enhanced ROP attack detec-
tion framework for Linux operating system. In: International
Conference on Cyber Security And Protection Of Digital Services
(Cyber Security). IEEE (2017)

12. Das, S., Zhang, W., Liu, Y.: A fine-grained control flow integrity
approach against runtime memory attacks for embedded systems.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 25, 3193–3207
(2016)

13. Alam,M., Roy, D.B., Bhattacharya, S., Govindan, V., Chakraborty,
R.S.,Mukhopadhyay, D.: SmashClean: a hardware levelmitigation
to stack smashing attacks in OpenRISC. In: ACM/IEEE Interna-
tional Conference on Formal Methods and Models for System
Design (MEMOCODE), pp. 1–4. IEEE (2016)

14. Kananizadeh, S., Kononenko, K.: Development of dynamic protec-
tion against timing channels. Int. J. Inf. Secur. 16, 641–651 (2017)

15. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation:
an efficient approach to combat a board range of memory
error exploits. In: Proceedings of the 12th Conference on
USENIXSecurity Symposium—volume12, Series SSYM’03, p. 8.
USENIX Association, Berkeley (2003). http://dl.acm.org/citation.
cfm?id=1251353.1251361. Accessed 18 Jan 2019

16. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C.,
Sadeghi, A.-R.: Just-in-time code reuse: on the effectiveness of
fine-grained address space layout randomization. In: 2013 IEEE
Symposium on Security and Privacy (SP), pp. 574–588. IEEE
(2013)

17. Kumar, K.S., Kisore, N.R.: Protection against buffer overflow
attacks through runtimememory layout randomization. In: Interna-
tional Conference on Information Technology (ICIT). IEEE (2014)

18. Oberheide, J.: A look at ASLR in Android ice cream sandwich
4.0 (2012). https://www.duosecurity.com/blog/a-look-at-aslr-in-
android-ice-cream-sandwich-4-0. Accessed 18 Jan 2019

19. Zabrocki, A.P.: Scraps of notes on remote stack overflow exploita-
tion (2010). http://www.phrack.org/issues.html?issue=67&id=13#
article. Accessed 18 Jan 2019

20. Saito, T.,Watanabe, R., Kondo, S., Sugawara, S., Yokoyama,M.: A
surveyof prevention/mitigation againstmemory corruption attacks.
In: 19th International Conference on Network-Based Information
Systems (NBiS). IEEE (2016)

21. Meike, G.B.: Inside the Android OS: Building, Customizing,
Managing and Operating Android System Services, illus-
trated ed., P. Education, Ed. Pearson Education, vol. 1 (2018).
https://www.amazon.com/Inside-Android-OS-Customizing-Opera
ting/dp/0134096347?SubscriptionId=0JYN1NVW651KCA56C10
2&tag=techkie-20&linkCode=xm2&camp=2025&creative=16595
3&creativeASIN=0134096347. Accessed 18 Jan 2019

22. Cowan, C., Pu, C., Maier, D., Hintongif, H., Walpole, J., Bakke, P.,
Beattie, S., Grier, A., Wagle, P., Zhang, Q.: StackGuard: automatic
adaptive detection and prevention of buffer-overflow attacks. In:
Proceedings of the 7th USENIX Security Symposium, pp. 63–78
(1998)

23. ’xorl’: Linux GLibC stack canary values (2010). http://xorl.
wordpress.com/2010/10/14/linux-glibc-stack-canary-values/.
Accessed 18 Jan 2019

24. Lee, B., Lu, L.,Wang, T., Kim, T., Lee,W.: From zygote to morula:
fortifyingweakenedASLRonAndroid. In: Proceedings of the 2014
IEEE Symposium on Security and Privacy, Series SP ’14, pp. 424–
439. IEEE Computer Society, Washington (2014). https://doi.org/
10.1109/SP.2014.34

25. Miller, D.: Security measures in OpenSSH (2007). http://www.
openbsd.org/papers/openssh-measures-asiabsdcon2007-slides.
pdf. Accessed 18 Jan 2019

26. Molnar, I.: Exec shield, new Linux security feature (2003). https://
lwn.net/Articles/31032/. Accessed 18 Jan 2019

27. Wagle, P., Cowan, C.: StackGuard: simple stack smash protection
for GCC. In: Proceedings of the GCC Developers Summit, pp.
243–256 (2003)

28. Etoh, H.: GCC extension for protecting applications from stack-
smashing attacks (ProPolice) (2003). http://www.trl.ibm.com/
projects/security/ssp/. Accessed 18 Jan 2019

29. Erb, C., Collins, M., Greathouse, J. L.: Dynamic buffer overflow
detection for GPGPUs. In: IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pp. 61–73 IEEE
(2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.diin.2017.10.002
https://doi.org/10.1016/j.diin.2017.10.002
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/2382196.2382216
https://doi.org/10.1109/ACSAC.2009.16
https://doi.org/10.1109/ACSAC.2009.16
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/2133375.2133377
http://dl.acm.org/citation.cfm?id=1251353.1251361
http://dl.acm.org/citation.cfm?id=1251353.1251361
https://www.duosecurity.com/blog/a-look-at-aslr-in-android-ice-cream-sandwich-4-0
https://www.duosecurity.com/blog/a-look-at-aslr-in-android-ice-cream-sandwich-4-0
http://www.phrack.org/issues.html?issue=67&id=13#article
http://www.phrack.org/issues.html?issue=67&id=13#article
https://www.amazon.com/Inside-Android-OS-Customizing-Operating/dp/0134096347?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134096347
https://www.amazon.com/Inside-Android-OS-Customizing-Operating/dp/0134096347?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134096347
https://www.amazon.com/Inside-Android-OS-Customizing-Operating/dp/0134096347?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134096347
https://www.amazon.com/Inside-Android-OS-Customizing-Operating/dp/0134096347?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134096347
http://xorl.wordpress.com/2010/10/14/linux-glibc-stack-canary-values/
http://xorl.wordpress.com/2010/10/14/linux-glibc-stack-canary-values/
https://doi.org/10.1109/SP.2014.34
https://doi.org/10.1109/SP.2014.34
http://www.openbsd.org/papers/openssh-measures-asiabsdcon2007-slides.pdf
http://www.openbsd.org/papers/openssh-measures-asiabsdcon2007-slides.pdf
http://www.openbsd.org/papers/openssh-measures-asiabsdcon2007-slides.pdf
https://lwn.net/Articles/31032/
https://lwn.net/Articles/31032/
http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/


532 H. Marco-Gibert, I. Ripoll-Ripoll

30. Molnar, I.: Stackprotector updates for v3.14 (2014). https://lwn.
net/Articles/584278/

31. Shen, H.: Add a new option “-fstack-protector-strong” (2012).
http://gcc.gnu.org/ml/gcc-patches/2012-06/msg00974.html.
Accessed 18 Jan 2019

32. Guan, X., Ji, J., Jiang, J., Zhang, S.: Stack overflow protec-
tion device, method, and related compiler and computing device,
August 22 2013, uS Patent App. 13/772,858. https://www.google.
com/patents/US20130219373. Accessed 18 Jan 2019

33. Backes, M., Bugiel, S., Derr, E.: Reliable third-party library detec-
tion in Android and its security applications. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Series. CCS ’16, pp. 356–367. ACM, New York
(2016)

34. Greenberg,A.: SCmagazine: trojanizedAndroid apps steal authen-
tication tokens, put accounts at risk (2014). www.scmagazine.
com/trojanized-android-apps-steal-authentication-tokens-put-
accounts-at-risk/article/342208/

35. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study
of android application security. In: Proceedings of the 20th
USENIX Conference on Security, Series SEC’11, pp. 21–21.
USENIX Association, Berkeley (2011) http://dl.acm.org/citation.
cfm?id=2028067.2028088. Accessed 18 Jan 2019

36. Poll: How often do you reboot? (2014). http://www.androidcentral.
com/poll-how-often-do-you-reboot. Accessed 18 Jan 2019

37. Wang, H., Li, H., Li, L., Guo, Y., Xu, G.: Why are android apps
removed from Google play? A large-scale empirical study. In Pro-
ceedings of the 15th International Conference on Mining Software
Repositories, Series MSR ’18, pp. 231–242. ACM, New York
(2018). http://doi.acm.org/10.1145/3196398.3196412

38. Marco-Gisbert, H., Ripoll, I.: Preventing brute force attacks against
stack canary protection on networking servers. In: 12th Interna-
tional Symposium on Network Computing and Applications, pp.
243–250 (2013)

39. Petsios, T., Kemerlis, V.P., Polychronakis, M., Keromytis, A.D.:
DynaGuard: armoring canary-based protections against brute-
force attacks. In: Proceedings of the 31st Annual Computer Secu-
rity Applications Conference, Series ACSAC 2015, pp. 351–360.
ACM, New York (2015). http://doi.acm.org/10.1145/2818000.
2818031

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://lwn.net/Articles/584278/
https://lwn.net/Articles/584278/
http://gcc.gnu.org/ml/gcc-patches/2012-06/msg00974.html
https://www.google.com/patents/US20130219373
https://www.google.com/patents/US20130219373
www.scmagazine.com/trojanized-android-apps-steal-authentication-tokens-put-accounts-at-risk/article/342208/
www.scmagazine.com/trojanized-android-apps-steal-authentication-tokens-put-accounts-at-risk/article/342208/
www.scmagazine.com/trojanized-android-apps-steal-authentication-tokens-put-accounts-at-risk/article/342208/
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://www.androidcentral.com/poll-how-often-do-you-reboot
http://www.androidcentral.com/poll-how-often-do-you-reboot
http://doi.acm.org/10.1145/3196398.3196412
http://doi.acm.org/10.1145/2818000.2818031
http://doi.acm.org/10.1145/2818000.2818031

	SSPFA: effective stack smashing protection for Android OS
	Abstract
	1 Introduction
	2 Related work on memory protection architectures
	3 Overview of stack smashing protection architecture
	4 Analysis of the SSP in the Android architecture
	4.1 SSP direct disclosure
	4.2 SSP brute force attacks
	4.3 Summary of weaknesses

	5 SSPFA: enhanced SSP for the Android architecture
	6 Implementation
	6.1 Application launch
	6.2 Application termination
	6.3 Exception handling
	6.4 Modifications to Zygote
	6.5 Implementation discussion

	7 Evaluation
	7.1 Verification of the implementation
	7.2 Memory footprint
	7.3 Temporal overhead
	7.4 Portability

	8 Discussion
	9 Conclusions
	References




