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We study a hybrid quantum system composed of an ion and an electric dipole. We show how
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whose internal state can be controlled with ultrafast laser pulses, by trapping them in the vicinity
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I. INTRODUCTION

Outstanding progress during the last 20 years in atomic
physics and quantum optics has lead to the realization of
novel quantum phases of matter, including Bose-Einstein
condensates [1], Fermi degenerate gases [2], and strongly
correlated many-body systems that simulate the behav-
ior of complex models of condensed matter physics [3]
and even relativistic quantum mechanics [4]. In particu-
lar, trapped atomic ions constitute nowadays one of the
most advanced platforms for quantum simulation [5] and
quantum information processing [6].

In parallel, the production of cold molecules has also
attracted much attention because of their potential ap-
plication to quantum information [7] and their sensi-
tivity to the values of fundamental constants [8] and
parity- and time-violating interactions [9], as well as for
the study and control of chemical reactions at ultralow
temperatures[10]. In this context, we note the recent
improvement in the measurement of the electron’s elec-
tric dipole moment with a beam of YbF molecules [11].
Experimental progress has been steady toward produc-
tion by a broad range of methods, from photoassocia-
tion [12], to magnetic-field sweeps through Feshbach res-
onances [13], buffer-gas cooling [14], and deceleration of
molecular beams by Stark and Zeeman interactions [15].
Of particular interest are cold polar molecules because of
their relatively easy manipulation with external electric
fields [7] and because the anisotropic and long-range char-
acter of the dipole-dipole interaction makes these systems
fundamentally different from cold atomic gases.

Theoretical studies predict that polar molecules
can feature strongly correlated crystalline states and
superfluid-crystalline phase transitions [16]. They have
also been suggested to simulate quantum magnetism
Hamiltonians such as the XXZ and t-J models [17].

∗ Corresponding author: jordi.mur@csic.es

Here, it is worth noting the recent realization of a spin
model with KRb molecules in optical lattices, with rota-
tional states playing the role of spins [18].

In addition, cold polar molecules have been proposed
to realize quantum information tasks either on their
own [7] or in hybrid systems with neutral atoms. Partic-
ular attention has been paid to the possibility of profiting
from the strong electric dipole-dipole interaction between
polar molecules [19] or in hybrid molecule–Rydberg-atom
setups [20]. The proposal to use polar molecules together
with mesoscopic quantum circuits [21] has also opened
an interesting alternative route toward quantum infor-
mation processing with molecular species.

For these applications, it is of paramount importance
to have an accurate knowledge and control of the prop-
erties of the molecules, most notably their electric dipole
moments (EDMs). From the theoretical point of view,
the determination of accurate EDMs and molecular po-
larizabilities requires complex calculations [22]. Exper-
imentally, the best measurements to date are usually
obtained by molecular-beam electric resonance meth-
ods [23]. These methods are well suited to study-
ing molecules in their ground electronic and vibrational
states in a molecular beam. However, it would be inter-
esting to have a tool that can also probe the EDMs of
molecules that cannot be produced in beams or in ex-
cited rovibrational states, as is usually the case for cold
molecules created from cold alkali-metal atoms in photo-
association and magnetoassociation experiments.

In this work, we propose an EDM measurement pro-
tocol for trapped polar molecules. To do so, we put
together two demonstrated techniques—trapped atomic
ions as sensitive probes of weak external forces [24–
26], and ultrafast control on the internal state of cold
molecules [27]—to design a quantum-sensing protocol
for the measurement of molecular EDMs by coupling a
trapped molecule to an atomic ion in a hybrid setup.
We show that, by use of pulsed forces on the ion and
the molecule, it is possible to engineer a quantum phase
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Figure 1. (color online) Scheme of the system. An ion of mass
m and charge q (green dot with ‘+’) is confined in an ion
trap with a “stylus electrode” geometry [29] (gray cylinder)
while a polar molecule (orange oval) of mass M and EDM µ
(thick arrow) is trapped by a focused laser (blue shaded area)
a distance z0 below. ω and Ω stand for the corresponding
trapping frequencies.

gate between the two. Interference measurements of this
phase on the state of the ion allow then determination of
the molecular EDM with an uncertainty similar to that of
optical Fourier transform spectroscopy. In addition, this
protocol may find further applications in molecular cool-
ing and the quantum simulation of strongly interacting
systems of dipoles [28].

In Sec. II we present our theoretical approach to de-
scribing the hybrid system and the separation of time
scales that allows the assignment of a well-defined,
nonzero EDM to a trapped molecule. Based on this
framework, in Sec. III we discuss various possible pro-
tocols to measure the molecular EDM, including the
main result of this paper: a protocol based on using a
nearby ion as a quantum probe (Sec. III B). To support
our claims, we provide numerical results (Sec. IV) and a
detailed experimental proposal (Sec. V). Particular ele-
ments of the proposal are discussed in further detail in
several Appendixes included at the end of the paper.

II. THEORETICAL APPROACH

A. Model of a hybrid ion-dipole system

We consider an ion of mass m and charge q confined in
a harmonic trap of frequency ω, and an electric dipole µ
of mass M in a harmonic trap of frequency Ω; see Fig. 1.
For simplicity, we assume that the traps are spherically
symmetric about their minima. The total energy of the
system can be written

W =
1

2
mω2(x− x0)2 +

1

2
MΩ2X2 +

qµ · (x−X)

4πε0|x−X|3
(1)

Here, x is the position vector of the ion,X the position of
the dipole, and x0 = (0, 0, z0) the position vector of the
ion’s trap minimum in the absence of ion-dipole coupling
(IDC), while the dipole’s trap is taken as the origin of
coordinates.

For typical values of the trapping frequencies (ω/2π ∼
MHz, Ω/2π ∼ kHz), the IDC will lead to a (small) shift of
both particles’ equilibrium positions. The behavior of the
system for small displacements around the latter can be
described in terms of normal modes (NMs) [28]. Assum-
ing for simplicity a configuration in which the molecule’s
EDM is along the axis joining the two trap minima, which
we take as the z axis, µ = µzez, the motion along each of
the x, y, z directions decouples from the others. We detail
in Appendix A a procedure to ensure such alignment ini-
tially; Appendix D contains a discussion of the effects of a
possible misalignment. We then have two NMs of the ion-
dipole system in each direction. We name these center-of-
mass (c.m.) and stretch (str) modes by analogy with the
NMs of two-ion systems [30]. Indeed, for the case ω = Ω
(when relative and c.m. coordinates exactly decouple),
the NMs do correspond to in-phase and out-of-phase dis-
placements of the two particles, as with two ions [28].
It is useful to introduce a parameter α = qµ/(4π~ε0z20),
which has units of frequency and gives a measure of the
IDC strength. For typical values (see Table I) we find

α/
√
ωΩ ∼ 0.1 − 10, which means that one can reach a

regime of strong coupling. We also define a characteristic
length L = [(qµ/4πε0)(mω2 + MΩ2)/(mMω2Ω2)]1/4 ∼
1− 10 µm.

B. Separation of time scales and effective nonzero
molecular EDM

An electric dipole µ in the potential energy landscape
given by Eq. (1) and aligned in the direction of the ion
has two possible equilibrium positions, z↑,↓, depending
on whether it is pointing toward or away from the ion;
see Appendix A and Ref. [28]. Assuming that the dipole
corresponds to the EDM of a diatomic molecule in a given
electronic and vibrational state, its dynamics is governed
by the following Hamiltonian

Hmol =
1

2
MΩ2X2 +

∑
µ

Vext;µ(X)Pµ +BrotJ
2 . (2)

Here Pµ is the projector on an eigenstate of µ̂, the molec-
ular EDM that couples to external fields, Vext;µ, such as
the electric field of a nearby ion. The last term describes
the internal energy of the molecule in rotational state |J〉,
J2|J〉 = J(J + 1)|J〉.

The EDM of a diatomic molecule in a single rotational
state, |J〉, is exactly zero in the absence of fields break-
ing inversion symmetry. For a hybrid system as in Fig. 1,
one cannot apply a dc electric field to break the symme-
try and hybridize rotational states into pendular states
with a nonzero µ, as the fields required are typically
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∼ kV/cm [31] and might expel the ion from its trap.
Instead, we consider putting the molecule in a superpo-
sition of rotational states. Coherent superpositions of
rotational states have been realized in experiments with
40K87Rb [18], where coherence times tcoh ∼ 10− 100 ms
were observed, sufficient for implementing the quantum
protocol that we introduce below. However, a freely
evolving superposition of rotational states would quickly
result in a vanishing average EDM due to the fast inter-
nal dynamics set by the BrotJ

2 term. To prevent this
and keep the EDM oriented with respect to the ion, we
propose instead to use two-photon Raman processes with
ultrafast pulses. In the following, we briefly discuss the
separation of time scales in Hmol that allows doing so,
leaving a more detailed analysis to Appendix C.

The Hamiltonian (2) can be split into two parts with
very different time or energy scales. The trapping poten-

tial for a given µ, H
(0)
µ = (1/2)MΩ2X2 + Vext;µ(X),

has a characteristic energy in the range of Ω−ω ∼
kHz−MHz [28]. This is much slower than the part
of the Hamiltonian describing the internal dynamics,
H(1) = BrotJ

2, characterized by Brot ∼ GHz. Exper-
iments with molecular beams have proven the possibility
of using ultrafast laser pulses, of duration τ � 1/Brot,
to control the transfer of population between rotational
states; see, e.g., [27]. We propose to use similar control
techniques to effectively “freeze” the internal dynamics
of the molecule (see the details in Appendix B). This ul-
trafast process occurs on a time scale much shorter than

the spatial dynamics due to H
(0)
µ , τ � 1/ω. As a con-

sequence, the spatial dynamics of the resulting “frozen”
dipole, µ, is disentangled from the internal dynamics and

governed by H
(0)
µ . The coupling of this trapped and ori-

ented EDM with the nearby ion can then be described
using the language of normal modes in Sec. II A; see Ap-
pendix A and Ref. [28]. Below, we show how, once the
molecule is initialized in a state with a nonzero µ, it is
then possible to measure the weak electric field generated
by this EDM using a trapped ion as a sensitive quantum
probe, effectively determining the value of µ.

III. EDM MEASUREMENT PROTOCOLS

A. Based on existing trapped-ion protocols

In the absence of an ion, a direct way to measure the
EDM of a trapped molecule is to apply a dc electric field
~Edc on its dipole, and measure the corresponding Stark
energy shifts spectroscopically, taking advantage of the
long interrogation times in the trap. With both ion and
dipole trapped, one can in principle detect a similar shift
due to the ion’s field at the dipole’s position and, by
probing it at various (unknown) distances z0, estimate µ.
However, the relative weakness of this effect (see Table I)
leads us to consider two alternatives that rely on the
capability of trapped ions to detect very weak forces [24–

Table I. Comparison between a system composed of two ions
and an ion-dipole system. Particle no. 1 is an ion while no. 2
is either an ion or a dipole with µ = 1 D, respectively.

System Two ions Ion + dipole
Interparticle distance z0 ∼ 10µm ∼ 10µm
Energy of no. 1 in field of no. 2 h×35 GHz h×73 kHz
Force of no. 1 on no. 2 2.3 aN 4.8× 10−6 aN

26].
A first strategy is to characterize the NM frequencies

of the coupled system. These depend on the particles’
masses, the ratio between trap frequencies Ω/ω and, most
fundamentally, on the ratio between IDC and trap ener-
gies, ~α/(mω2z20) ∝ µ/z40 [28]. By electrically or opti-
cally driving the ion, one can excite NMs and determine
the resonance frequencies ωc.m. and ωstr from the oscilla-
tions of the ion, thus allowing one to fit both z0 and µ as
is done in mass spectroscopy in two-ion systems [32, 33].
These measurements can be done (i) by estimating the
heating rate of the ion as a function of the driving fre-
quency [34], (ii) by measuring the growth in the number
of phonons as a function of the frequency [6], or (iii) by
carefully measuring the ion position and obtaining its
Fourier transform.

B. Quantum-sensing protocol and applications

While the approach based on an analysis of the NM
eigenfrequencies is simple, it requires long measurement
times (∼ 0.1−1 s [32, 34]) to discern whether a driving is
resonant or not, limiting the potential sensitivity to µ. To
overcome this, we propose a method that falls in between
the two above: while relying on the NM eigenfrequencies,
its goal is to detect the energy shifts and phases induced
by the IDC on the trapped ion. The basic idea is to apply
a state-dependent force on the ion causing it to explore
two spatial regions where it suffers different energy shifts
due to its interaction with the dipole. Combining this
with additional forces on the dipole and initial and final
quantum gates on the ion, we can use the internal state
of the ion to determine µ. This is similar to previous
quantum logic spectroscopy (QLS) protocols for atomic
and molecular ions [25, 35] in that the ion acts as a quan-
tum probe of the combined system dynamics. In those
works, the goal was to measure the coupling of a parti-
cle to external forces. For example, Ref. [35] relied on
the Coulomb force between Be+ and Al+ ions, together
with state-dependent forces on both of them, to measure
the sensitivity of Al+ to light of a particular frequency.
Instead, here we use the trapped ion as a sensitive mea-
surement device for the weak force that the dipole exerts
on it. In this sense, our proposal is similar to [26] in
harnessing tools of quantum information science to mea-
sure very small energy shifts. For comparison, while the
authors of Ref. [26] measured an energy of the order of
mHz between two spins separated by ∼ 2–3µm, here the



4

aim is to measure an energy shift ∼kHz due to the dipole
located at a distance ∼ 10µm; see Table I.

Specifically, our measurement protocol consists of
the following steps: (i) prepare the ion in internal
state |0〉i; (ii) apply a π/2 pulse on the ion, H =
exp(−iσzi π/2); evolution thereafter of each of its internal
states, {|0〉i, |1〉i}, corresponds to an arm in a Ramsey
interferometer; (iii) optionally, apply a reference phase
on the ion to maximize the detection signal, exp(iϑσzi );
(iv) apply forces fi,d(t) on the ion and dipole until the
motional state is restored [36, 37] and the system expe-
riences a total phase exp(iφ(µ)σzi /2) which depends on
the molecule’s EDM due to the ion-dipole coupling; (v)
finally, close the two arms of the interferometer with a
new π/2 pulse on the ion, and measure the ion internal
state. In contrast to previous QLS works [25, 36, 37],
in this protocol we need only a state-dependent force on
the ion, fi(t)σ

z
i , while the force on the dipole, fd(t), may

have any origin and does not need to be state depen-
dent. For simplicity, and to get practical estimates, be-
low we assume that both fi,d are optical forces originating
from the application of short, far-detuned laser pulses (ac
Stark shifts) on an internal transition of the ion and the
dipole, respectively (in general, the laser systems used to
address the ion and the molecule will be different).

The description of the system in terms of NMs allows
us to analytically and numerically compute the phase φ
accumulated as a function of force duration T and aver-
age strength f [25]:

φ =
∑

n=com,str

βna
2
nT

2f ifd , a2n := ~/ (mnωn) (3)

with dimensionless constants βn ∼ O(1). We remark that
the NM frequencies are analytic functions [28] of the sys-
tem S = (m,M,µ;ω,Ω, z0) and driving D = (fi, fd, T )
parameters, i.e., φ is a function φ = φ(S,D). We also em-
phasize that this description is based on the separation
of spatial and internal dynamics for the dipole discussed
in Sec. II B, which imposes the condition that the force
duration be much longer than the internal dynamics time
scale, T � 1/Brot.

This framework allows us to devise several measure-
ment and control applications:

(A) For periodic drivings, fi,d = f i,d cos(νt)e−(t/T )2 ,
the accumulated phase diverges for ν ≈ ωc.m., ωstr,
providing an alternative to mode spectroscopy to
determine ωc.m.,str.

(B) If µ is unknown, a measurement of φ for a given
z0 provides an estimate for α and hence µ/z20 . The
precision with which µ can be determined is then
mainly limited by the accuracy in z0.

(C) More generally, measuring φ for a range of (un-
known) distances, and using the known dependence
of ωc.m.,str on α, a multivariate analysis of φ leads
to estimates of µ and z0.

(D) Conversely to (B), for systems where µ is known,
the protocol allows estimatation of z0, realizing a
sort of “ion-dipole force microscopy” (IDFM).

(E) If all system parameters S are known, one can
realize a controlled-phase gate between ion and
molecule by properly choosing T and fi,d(t), using
state-dependent forces also on the dipole.

IV. NUMERICAL RESULTS

A. Estimation of molecular EDMs

We performed numerical simulations to evaluate the
feasibility of these applications with two representative
model systems, composed of a Ca+ ion and either a
KRb or a CaH molecule, thus covering a broad range of
EDM values and currently available cold polar molecules.
These calculations confirm that one can induce a state-
dependent phase φ ∼ 1 rad on the composite system,
similar to what has been realized with atomic ions, thus
enabling the applications above.

Trapping of cold calcium monohydride (CaH)
molecules in their ground state was first described in
Ref. [38]. In their electronic ground state, X2Σ+, their
EDM is µCaH = 2.94 D [39]. Rovibrational states within
X2Σ+ should be stable for typical trapping times [40]
while radiative lifetimes of the lowest rovibrational lev-
els of the electronically excited state B2Σ+ are τrad ≈
58 ns [41], making them good candidates to implement
optical forces. We plot in Fig. 2(a) the phase accumu-
lated, according to Eq. (3), due to the action of a pair
of pulses detuned from Ca+ and CaH resonances, for a
range of EDMs close to µCaH, corresponding to appli-
cation (B). Note how a small 1% change in µ from its
nominal value leads to φ changing sign and increasing in
magnitude. On the other hand, Fig. 2(b) shows the ac-
cumulated phase as a function of ion-dipole distance for
µ = µCaH: the sinusoidal fit through the data shows that
distances can be retrieved with submicrometer resolution
from measurements of φ [application (D), IDFM].

We consider next a hybrid system composed of Ca+

and KRb molecules. Fermionic 40K87Rb molecules have
been produced and confined in harmonic traps [42] as well
as optical lattices [43]. The EDM of their absolute rovi-
bronic ground state (X1Σ+, v = 0, J = 0) was measured
as µKRb = 0.566 D [44]. We show in Fig. 2(c) the phase
accumulated by a hybrid 40Ca++ 40K87Rb (X1Σ+) sys-
tem as a function of the molecule’s EDM. We see that for
similar trapping parameters as in the Ca+ + CaH case,
the dependence of φ(µ) is smoother, due to the smaller
value of µKRb. However, similar values for the phase
can be reached by an appropriate choice of the excited
state to implement the light force. For example 2(0+)
(τrad ≈ 27 ns [45]) or (3)1Σ+ (τrad ≈ 0.3 ns [46]) should
permit higher intensities resulting in larger phases.
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Figure 2. (color online) (a) Accumulated phase for a 40Ca++
CaH (X2Σ) system with ω/2π = 1 MHz, Ω/2π = 1 kHz,
T = 150 ns, ΩRabi/2π = 300 MHz, ∆Ca/2π = 0.8 GHz, and
∆CaH/2π = 330 MHz. Blue filled circles are calculated for
z′0 = 20 µm, red squares for z′0 = 30 µm; solid lines are sinu-
soidal fits. (b) As (a), with µ = µCaH, as a function of ion-
dipole distance. (c) The same for 40Ca++ 40K87Rb (X1Σ+)
with T = 100 ns, ΩRabi/2π = 500 MHz, ∆Ca/2π = 1 GHz,
∆KRb/2π = 250 MHz, and traps as in (a). (d) As (c) as a
function of pulse duration with µ = µKRb and z′0 = 20 µm.
Here, z′0 is the actual ion-dipole distance including the dis-
placement due to the IDC discussed in Appendix A.

V. AN EXPERIMENTAL PROPOSAL

According to our simulations, the main limiting factor
in realizing our protocol is photon scattering by the ex-
cited state. Experience with atomic hyperfine qubits has
shown that inelastic off-resonant light scattering can be
notably reduced using Raman schemes with large detun-
ings, at the expense of larger laser intensities [47]; sim-
ilar coherent techniques have been applied to ultracold
molecules for quantum state transfer [27, 45, 48]. Thus,
off-resonant laser pulses appear especially suitable as far-
detuned optical forces allow precise bounding of photon
scattering probabilities. We note that we assumed for
simplicity forces that do not depend on the dipole’s EDM.
However, our formalism can be easily generalized to the
case fd = fd(µ). The main experimental challenges re-
maining are building a hybrid setup and orienting the
molecular EDM for times & T . We discuss here an ex-
perimental scheme addressing these issues.

We envision the following experimental setup and se-
quence, cf. Fig. 1. The ion would be confined using a
microchip trap [49–51] or pure optical means [52]. A
particularly attractive setup would use a radio-frequency
“stylus trap” [29] because of its compact design, which
allows high optical and spatial access, and high sensitiv-
ity to nearby fields. Below the ion trap, a tightly focused
laser beam or an optical lattice [18, 53] would trap the
molecule(s). Additional lasers required for the EDM ori-
entation, rotational state manipulation, and application
of optical forces would be directed onto the molecules
using a similar optical path.

To start, as in Ref. [18], molecules would be trapped

and cooled in their ground electronic, vibrational, and
rotational state, |g〉 = |X, v = 0, J = 0〉. Experiments
with cold molecular beams have already demonstrated
the possibility of controlling the transfer of population
to selected rotational states by means of ultrafast two-
photon Raman processes [27], subject to the selection
rule ∆J = 0,±2 [54]. Here, we would use the same tech-
nique to implement a two-photon π/2 pulse to transfer

the molecules to the state |χ(t = 0)〉 = (|e〉 + |g〉)/
√

2,
with a nonzero µ along the z axis; this would com-
plete the initialization of the molecular state. (Here,
|e〉 = |X, v = 0, J = 2〉 is a rotationally excited state
of the ground rovibronic manifold.) As noted above,
in free space, the energy difference between |g〉 and |e〉
would lead to fast oscillations of µ(t) = 〈χ(t)|µ̂|χ(t)〉,
which would quickly average out. To prevent this, one
would “freeze” the molecule’s internal dynamics by ap-
plying a train of π pulses at a rate νπ > 6Brot (for de-
tails, see Appendix B), which amounts to a dynamical
decoupling scheme [55, 56]. Such ultrafast manipulation
strategies have been implemented with sequences of mi-
crowave [57, 58] or optical [59–61] pulses in trapped-ion
experiments, and could be realized with the same Ra-
man lasers used for the state initialization. As shown in
Fig. 3, this strategy results in a nonzero average EDM
[cf. Eq. (B6)],

µ = 6Brot

∫ 1/(6Brot)

0

µ(t)dt ≈ µmol[1 +O(Brot/νπ)2] ,

(4)

on which the much slower off-resonant pulses required
for the phase gate can be applied. Indeed, the very long
natural lifetimes of rotational states in the lowest vibra-
tional manifolds of the ground electronic state of polar
molecules [40], together with their observed coherence
times tcoh ≈ 10–100 ms [18], open a wide pulse-duration
window, 1/Brot � T � tcoh, to manipulate and measure
the molecule’s EDM. Within this frame, the aforemen-
tioned electronic excited states appear suitable to imple-
ment the light forces required by our quantum-sensing
protocol. Taking these constraints into account, we cal-
culated the phase accumulated by a Ca+ + KRb system
as a function of pulse time T [application (E)]. As the
results in Fig. 2(d) show, phases of order 0.1 rad can
be generated. Interestingly, the fact that the present
protocols enable pulses much shorter than the oscilla-
tion period due to dipole-dipole interactions between
nearby molecules, tdip ≈ 20 ms [18], opens the perspec-
tive to study the coherent dynamics of molecules in real
time [62, 63]. This can be of interest for nonequilibrium
quantum simulations with polar molecules [64].

VI. SUMMARY AND OUTLOOK

In summary, we have studied a hybrid quantum sys-
tem composed of an ion and an electric dipole, and shown
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Figure 3. (color online) Instantaneous EDM µ(t) for a free
molecule (dashed blue line) and for a molecule subject to π
pulses at times t = {1/5, 3/5, 1}×(2π/6Brot) (solid red). The
horizontal dotted line indicates the average value µ ≈ 0.76µ.

how the ion can be used as a sensitive probe of the
dipole’s magnitude. To this end, we have relied on the
use of ultrafast control pulses to effectively orient the
dipole, and then proposed a quantum protocol to re-
trieve the information on the dipole’s electric moment
encoded in the ion’s state. We have provided numeri-
cal calculations demonstrating the feasibility of a range
of applications, from measuring EDMs to mapping the
distribution of dipoles, with experimental tools currently
available (separately) in trapped-ion and cold-molecule
laboratories. Moreover, we have seen that a regime of
strong ion-molecule coupling can be achieved. This may
allow for further molecule cooling methods by interaction
with trapped ions, as well as the creation of ion-molecule
entangled states [28, 65].

The uncertainty in the EDM value achievable with this
protocol is proportional to the uncertainty δφ in the es-
timation of the accumulated phase [28]. Setting aside
quantum-metrology schemes requiring probe entangle-
ment, this is limited by quantum projection noise on ion
state detection [66], according to which δφ ∝ 1/

√
N , with

N the number of measurements. Molecular EDMs mea-
sured by optical Stark spectroscopy of diatomic molecules
typically are obtained with an uncertainty on the order of
10−2 − 10−3 (see, e.g., [67]), a precision which should be
achievable with the present protocol. On the other hand,
determinations of EDMs of larger molecules by molecu-
lar beam Fourier transform spectroscopy in an electric
field in the microwave range reach nowadays relative un-
certainties on the order of 10−4 (see, e.g., [68]). This
method requires fitting the observed data to the molecu-
lar Hamiltonian including the Stark effect, and knowl-
edge of molecular-structure parameters with sufficient
accuracy; its precision is ultimately limited by electric-
field inhomogeneities and the interrogation time of the
molecules as they fly through the detector. It appears
difficult to reach a similar precision with the protocol pro-
posed here with current coherence times, which limit the
number of measurements. On the other hand, the present
scheme does not require an accurate prior knowledge of
the molecule’s structure parameters and model Hamil-

tonian. Furthermore, it enables the study of molecular
species that cannot be produced as a molecular beam, as
is the case with ultracold heteronuclear dimers.

We anticipate that these tools will enable additional
realizations of quantum information tasks with hybrid
systems [69], in particular for the quantum simulation
of quantum magnetism and far from equilibrium dynam-
ics [64], e.g., relying on novel surface traps able to con-
duct microwaves and realize large magnetic-field gradi-
ents [70]. Finally, the protocols discussed here also boost
the possibilities of molecular coherent control [62, 63] and
coherent conversion of radiation between optical and mi-
crowave frequencies [71].
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Appendix A: Effective EDM for a trapped dipole

In the absence of external fields that break symmetry
under parity, a diatomic molecule in a pure vibrational-
rotational state |v, J〉 has no permanent EDM for sym-
metry reasons, 〈v, J |µ̂|v, J〉 = 0. To induce an EDM in
such a molecule, one can transfer it into a superposition
state, such as

|ψ〉 = (|0, 0〉+ |0, 2〉) /
√

2 . (A1)

In this state, indicating the transition dipole moment by
µmol = 〈0, 0|µ̂|0, 2〉 ∈ R, the molecule will have an EDM
given by

µ = 〈ψ|µ̂|ψ〉 = µmol 6= 0 . (A2)

The two rotational states have different energies,
BrotJ

2|v, J〉 = BrotJ(J + 1)|v, J〉. Hence, as time goes
by, the two rotational components in (A2) will acquire
different phases, which results in an oscillating EDM of
the form

µ(t) = µmol cos(Erott/~) , (A3)

with µmol given by Eq. (A2) and Erot = E(|0, 2〉) −
E(|0, 0〉) = h × 6Brot, where h is Planck’s constant. Di-
atomic molecules typically have rotational constants of a
few to a few hundreds of gigahertz (e.g., Brot(KRb) =
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1.114 GHz [44], Brot(CaH) = 128 GHz [39]). Thus, the
dynamics of the system as given by Hmol, Eq. (2), is
characterized by a series of motions at very different fre-
quencies: Ω ∼ kHz� ω ∼ MHz� Brot ∼ GHz.

Due to the sinusoidal dependence in Eq. (A3), in the
absence of external trapping, the electric field generated
by the dipole on the ion would average to zero over a ro-
tational period h/Erot. The presence of the trapping po-
tential, however, renders inequivalent the situations when
the dipole is pointing toward the ion (µ · r = µz), and
when it is pointing away from it (µ · r = −µz).

To see this, let us look at the total energy of the
interacting ion-dipole system, written in terms of rel-
ative, r = x − X, and center of mass (c.m.), R =
(mx+MX)/(m+M), coordinates (cf. [28])

W =
1

2
mω2(R− x0)2 +

1

2
MΩ2R2

+
1

2
mredω

2
str,0r

2 −mredω
2z0 · r +

qµ · r
4πε0|r|3

+mred(ω2 − Ω2)R · r , (A4)

where we introduced mtot = m + M as the total mass
and the reduced mass mred = mM/mtot, and we identi-
fied the relative-motion collective mode (“stretch mode”)
frequency for the uncoupled (µ = 0) and overlapping
(z0 = 0) system: ω2

str,0 := (mΩ2 + Mω2)/mtot. The
terms on the second line of Eq. (A4) correspond to the rel-
ative coordinate being in a harmonic potential displaced
from the origin, while the coupling with µ amounts to a
further displacement. For the usual case ω � Ω, it fol-
lows that ωstr,0 ∼ ω, i.e., the trapping frequency of the
relative motion will be of the same order as ω ∼ MHz.
Finally, the last term in (A4) indicates the coupling be-
tween relative and c.m. motions, present if (and only if)
the two trapping frequencies differ.

Let us assume for the moment that Ω = ω (hence,
ωstr,0 = ω), so that the last term in W [Eq. (A4)] van-
ishes. Then, the IDC has the effect of a potential added
on top of the displaced harmonic trap. Its magnitude can
be estimated by introducing

rdip :=
qµ

4πε0z30

1

mω2
=

~α
mω2z20

z0 ≡ α̃z0 , (A5)

so that qµ · r/(4πε0|r|3) ≈ ±mω2rdipz/2, with the sign
depending on the orientation of µ with respect to the ion.
As a consequence, the instantaneous potential energy
minimum for the dipole is located at z′0 = z0± rdipeµ(t),
where eion(t) is the unit vector pointing in the direc-
tion joining ion and dipole. This means that, when
the dipole points toward the ion, its potential energy
minimum is at z↑ = z0 + rdip and it generates a field
V↑ = qµ/(4πε0z

2
↑) on the ion; when it points away from

the ion, its equilibrium position is z↓ = z0 − rdip and it
generates V↓ = qµ/(4πε0z

2
↓).

If we consider a molecule in the superposition
state (A1) initially located at z↑, because of the time
dependence of its EDM, it will move about trying to

Table II. Typical length scales for the ion–polar-molecule sys-
tems studied, for trapping frequencies ω/2π = 1 kHz for the
Ca+ ion and Ω/2π = 1 kHz for the molecules (CaH, KRb).

aion amol z0 rdip
CaH KRb

16 nm 496 nm 282 nm 10 µm 10 nm

reach z↓ half a rotational period later. Even though the
distance between these positions is relatively small, it
is still a sizable fraction of the ground-state spread of
the molecule in its harmonic trap, amol =

√
~/(MΩ),

see Table II. This, together with the high value of Brot,
would render the spatial motion of such a dipole nonadi-
abatic. To avoid this, we rely on ultrafast Raman pulses
to “freeze” its free evolution, as detailed in Appendix B.

Appendix B: Dynamical Decoupling of
high-frequency EDM oscillations

A key point when measuring a molecular EDM is the
difficulty of determining its alignment with respect to a
known axis. A strategy to solve this is to apply a strong
dc electric field, which polarizes the molecule, resulting in
an easy mapping of the molecular frame to the laboratory
frame. As discussed in the main text, this strategy is not
suitable for a setup with a nearby ion, which would be
expelled from its trap.

Instead, we take advantage of the fact that at the
very low temperatures of ultracold molecule experiments,
one can populate a single rotational state |J〉 within the
vibronic (i.e., vibrational and electronic) ground state.
Then, taking into account the strong anharmonicity of
rotational spectra, E(J) = BrotJ(J + 1), one has well-
characterized transitions between single rotational states,
which can be addressed using microwave, radio frequency,
or two-photon stimulated Raman transitions. We con-
sider for concreteness manipulations between the two ro-
tational states, |J = 0,MJ = 0〉 ↔ |J = 2,MJ〉, with MJ

the projection of the rotational angular momentum on
the space-fixed z axis; the exact value of MJ for the sec-
ond state will be determined by the Raman lasers polar-
izations. Because of the long lifetimes of these states, the
molecule can be considered as a closed two-level system,
with states |g〉 ≡ |J = 0,MJ = 0〉, and |e〉 ≡ |J = 2,MJ〉.
Any superposition of these states, |χ〉 = α|g〉 + β|e〉,
can be represented on the Bloch sphere in the usual
way [72, 73]. (The role of other rotational states is ana-
lyzed in Appendix C.)

The interaction of the two-level molecule with an in-
tense radiation field can be modeled with the Jaynes-
Cummings Hamiltonian in the rotating-wave approxima-
tion (RWA) [72, 73],

H = (Erot/2)σz + ~ζ(t)σx (B1)

σZ = |e〉〈e| − |g〉〈g| (B2)

σX = (|e〉〈g|+ |g〉〈e|)/2 (B3)
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Figure 4. (color online) Time evolution of the initial state |χ(t = 0)〉 = |+σx〉 represented on the Bloch sphere (yellow) in spin
space, under the sequence of pulses described in Appendix B. The position of the state vector is indicated each time by a thick
red line. (a) Initial state; (b) state just before the first π pulse at time t = Trot/5− δ (0 < δ � Trot); (c) just after the first π
pulse at time t = Trot/5 + δ; (d) at time t = 2Trot/5: it has come back to |+σx〉; (e) at time t = 3Trot/5 − δ, just before the
next π pulse. Trot = h/Erot is the time for a full rotation in the absence of pulses; cf. Eq. (A3).

where we introduced ~ζ(t) = µmolE(t) with µmol =
〈e|µ̂|g〉 [cf. Eq. (A2)], and E is the laser electric field.
For our purposes, it is convenient to consider the Ra-
man lasers as linearly polarized along the real-space z
direction. Then, the upper rotational state coupled
with |J = 0〉 will be |J = 2,MJ = 0〉. We make this
choice because of our interest in a particular superpo-
sition state, (|J = 2,M = 0〉+ |J = 0〉)/

√
2, which has a

nonzero EDM pointing along the real-space z axis, i.e.,
along the direction joining the molecule and the ion. Its
spin-space representation is |+σX〉 := (|g〉+ |e〉)/

√
2, i.e.,

it corresponds to the point on the Bloch sphere crossing
with the ‘+X’ axis in spin space; see Fig. 4(a).

The first term in Eq. (B1) reflects the fact that the
two rotational states have energies differing by Erot =
h × 6Brot and, in the Bloch picture, generates rotations
of the state vector |χ〉 around the Z axis (in the fictitious
spin-1/2 space!) at a rate Erot/h. The second term,
which describes the interaction with the radiation field,
corresponds to rotations around the X axis at a rate ζ.

Our strategy to have an average nonzero EDM is then
based on ideas of dynamical decoupling [55, 56] and re-
lies on the following properties of the evolution of the
molecular state in the Bloch picture:

1. Initialize the molecule in state |χ(t = 0)〉 = |+σX〉.
Starting with a molecule in |g〉 = |J = 0,MJ = 0〉,
this is accomplished with a π/2 pulse that, in
spin space, rotates the state vector to |+σX〉; see
Fig. 4(a).

2. Free evolution makes the state vector rotate on the
X-Y plane toward the Y axis; see Fig. 4(b).

3. A rotation of π rad around the X axis at any point
in time, moves the state vector from the position
on the X-Y plane determined by the polar angle ϕ
to −ϕ; see Fig. 4(c).

4. Free evolution from that position is again a rota-
tion around Z in the same direction as before; see
Figs. 4(d) and 4(e).

As the time for a complete rotation on the X-Y plane
in the absence of such control pulses is Trot := h/Erot =

1/(6Brot), it follows that submitting the molecule to a
π pulse at a rate νπ > 1/Trot = 6Brot will result in the
average molecular EDM being different from zero.

To see this, consider the spin-space basis given by
|+σX〉, |−σX〉, with |−σX〉 := (|e〉 − |g〉)/

√
2. Noting

that the EDMs of these states are µ± = 〈±σX |µ̂|±σX〉 =
±µmol, we find that the molecule’s EDM at any time is
given by

µ(t) = µ+|〈g|χ(t)〉|2 + µ−|〈e|χ(t)〉|2

= µmol

(
|〈g|χ(t)〉|2 − |〈e|χ(t)〉|2

)
= µmol

(
1− 2|〈e|χ(t)〉|2

)
(B4)

Therefore, starting with |χ(t = 0)〉 = |g〉 and preventing
the state vector from reaching |e〉, |〈e|χ(t)〉| < 1 for all t,
leads to a nonzero average value of µ(t). Use now of the
sequence of dynamical-decoupling pulses outlined above,
with pulses occurring at time t1 and tk = tk−1 + 1/νπ,
leads to an average EDM

µ =
1

Trot

∫ Trot

0

µ(t) dt = µmol
sin(t1Erot/~)

t1Erot/~
. (B5)

For instance, with t1 = Trot/5 and νπ = 1/(2t1) =
2.5Erot/h, the result is µ ≈ 0.76µmol; this is the result
shown in Fig. 3 of the main body of the paper. In the
limit of many pulses per rotational cycle, νπ � Brot, one
gets

µ ≈ µmol

[
1− 1

3!

(
Brot

2νπ

)2

+ · · ·

]
, (B6)

which is the result quoted in Eq. (4) of the main text.
Let us remark that our results are based on a rudi-

mentary pulse sequence, with instantaneous pulses oc-
curring at time t1 = Trot/5 and then at a fixed rate
νπ = 5Brot/2, cf. Fig. 4. It is worth noting that more
elaborate pulse sequences have been designed which are
more robust against experimental fluctuations in timings,
pulse durations, and other sources of error, such as the
Carr-Purcell-Meiboom-Gill (CPMG) sequence [55, 74] or
the Uhrig Dynamical Decoupling (UDD) scheme [75],
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which has been implemented with trapped ions [57, 58]
and cold atoms [76]. More advanced and robust strate-
gies have also been developed (see e.g. [77, 78]) and imple-
mented [59] in the ultracold regime, but their discussion
lies beyond the scope of this work.

Appendix C: Ultrafast pulses and role of
higher-lying rotational states

The main difficulty in implementing the dynamical-
decoupling protocols in Appendix B for aligning a
molecule lies in the high-frequency requirement set by
the rotational constant Brot ∼ GHz: one has to couple
two states separated by a GHz-energy difference at a GHz
rate, i.e., using pulses with duration τ � 1/Brot ∼ 1 ns.
For CaH (Brot=128 GHz), one needs τ < 3.4 ps; for
KRb (Brot=1.14 GHz), τ < 0.4 ns. In Ref. [79], rota-
tional transitions in metastable CO a3Π1|v = 0〉 trapped
on a chip were driven with microwave pulses of dura-
tion τ ∼ 1 µs, yet we are not aware of pulsed microwave
sources that fulfill our protocol’s time-scale needs. How-
ever, these time-scale and energy requirements can be
met using two-photon Raman pulses with ultrafast lasers
addressing selected excited rotational-electronic states.
The feasibility of this proposal is based on the results
from two independent experimental groups: selective
population of particular rotational states of cold molec-
ular beams, demonstrated with NO(X2Π) molecules by
van der Zande and Vrakking and co-workers [27]; and the
ultrafast quantum-control experiments of atomic hyper-
fine qubits realized with the aid of a frequency comb by
Monroe and co-workers [80, 81]. We mention also the
large body of research available on coherent control of
molecular rotational states; see, e.g., [82–84] for recent
reviews.

Ultrafast laser pulses of duration τ ≤ 1/Brot have
bandwidths δω ∼ 1/τ ≥ Brot. In contrast to the situa-
tion encountered with atoms or atomic ions, pulses with
such bandwidths can in principle couple a given state to
several rotational states, which are spaced by multiples
of Brot. One should consider whether it is possible to
drive transitions between the states of interest, |g〉, |e〉,
without population leaking out to unwanted rotational
states. We study in the following a minimal five-level
space to assess this question.

We consider that our Hilbert space of interest is formed
by three states, starting in the lowest rotational state
of the ground electronic state of the molecule, which
we label |0〉 ≡ |X, J = 0〉, and which corresponds to
state |g〉 in Appendix B. Population from this state will
be driven by a two-photon Raman transition to state
|2〉 ≡ |X, J = 2〉 ≡ |e〉 via an intermediate, electroni-
cally excited state |1〉 ≡ |A, J ′ = 1〉; here A stands for
a generic electronically excited state, depending on the
molecule and laser employed. Such transitions are al-
lowed in the dipole approximation by the selection rule
∆N = 0,±1 [85]; for the case of singlet states, N = J .

Figure 5. (color online) Model five-level system. The two
rotational states used to construct a state with nonzero EDM
are |X, J = 0〉 and |X, J = 2〉. These states are coupled by
two lasers in a Raman scheme (colored arrows) via |A, J ′ = 1〉.
These three states form the Hilbert space of interest, indicated
by the shadowed box. In the electric-dipole approximation,
state |X, J = 2〉 can leak outside this space to |A, J ′ = 3〉, and
this to |X, J = 4〉. Relevant laser frequencies, ω1(2), Rabi fre-
quencies, Ωmk [Eq. (C2)], and detunings, ∆1(2), are also iden-
tified. Note that the nonharmonic character of the rotational
spectrum renders the detunings and, hence, Rabi frequencies
for transitions to and from |A, J ′ = 3〉 generally different from
those |A, J ′ = 1〉.

Now, the same selection rules allow in principle popula-
tion from |2〉 to “leak out” to |3〉 = |A, J ′ = 3〉, and from
there to |4〉 ≡ |X, J = 4〉, and so on, as sketched in Fig. 5.

Working in the dressed-atom picture with at most one
photon being absorbed from/emitted into the ω1,2 fields,
the relevant Hamiltonian describing this five-level system
in the rotating-wave approximation can be written in the
form [in the basis {|0〉, |1〉, |2〉, |3〉, |4〉}]

H =


∆1 Ω10 0 0 0
Ω∗10 −iΓA Ω12 0 0
0 Ω∗12 ∆2 Ω32 0
0 0 Ω∗32 E3 − iΓA Ω34

0 0 0 Ω∗34 E4

 . (C1)

Here, we have removed a constant term E1 = 2BA, where
BA is the rotational constant of the excited state A. ΓA is
the spontaneous decay rate from state A, and we neglect
decay from states within X. Ωmk is the laser-induced
dipole coupling between states |m〉 ∈ A and |k〉 ∈ X,

Ωmk = ~−1〈m|µ · E|k〉 , (C2)

with E the laser field at the molecule’s position. Finally,
E3(4) is the energy of state |3〉 (|4〉) in the RWA; they
are parametrized in terms of the rotational constants of
the ground and excited electronic states, BX,A, and the
photon energies, ω1,2.

For the dynamical-decoupling protocol in Appendix B
to work, we need to be able to drive population between
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Figure 6. (color online) Numerical evolution of the 5-level
system described by Eq. (C1) starting with all population in
state |0〉 (solid blue line) using the parameters in Table III.
At the end of the simulation, ≈ 92% population is in |2〉
(dashed green line), while less than ≈ 3.7% has remained in
|0〉 and ≈ 3.9% has leaked to |4〉 (solid purple line). After
the pulses, population in states |1, 3〉 (solid red and orange
lines) is negligible due to the large value of the detuning. The
gray line with small wiggles shows 103|1 − N(t)|, with N(t)
the total population at time t. The dashed Gaussian profiles
centered around t ≈ 4 stand for the laser intensity profiles (in
arbitrary units).

|0〉 and |2〉 without having transferred substantial pop-
ulation to states |4〉, |1〉, or |3〉 at the end of the pulse.
In Fig. 6 we show numerical results corresponding to the
time evolution with Hamiltonian (C1) with the parame-
ters indicated in Table III. For this simulation, we have
taken all population initially in state |0〉 and used two de-
layed Gaussian pulses to drive the transitions |0〉 ↔ |1〉
and |1〉 ↔ |2〉, respectively,

Ej(t) = E(0)j exp{−[(t− t(0)j )/τ ]2} cos(ωjt+ φj) , (C3)

t
(0)
1 = t0 , t

(0)
2 = t0 + δstirap . (C4)

Note that a value δstirap < 0 indicates counterintuitive
pulse order, i.e., the pulse at frequency ω2 arrives before
that at ω1, as in stimulated Raman processes (STIRAPs).
Following [27], for this calculation we have fixed the de-
lay to |δstirap| = n × (6BX), with n = 65 an integer to
maximize the coupling between states |0〉 and |2〉.

To reduce the number of free parameters, we have
taken Ω10 = Ω12 ≡ Ω̃. The nonharmonic character of the
rotational spectrum renders the detunings for transitions
to and from |A, J ′ = 3〉 generally different from those to
and from |A, J ′ = 1〉, and the corresponding Rabi fre-
quencies smaller. We model this, setting Ω32 = Ω34 ≡
0.7Ω̃. Similarly, we set the detunings ∆1 = ∆2 ≡ ∆. As
shown in Fig. 6, at the end of the pulse, the majority of
population (≈ 92%) has been successfully transferred to
state |2〉, while about 4% has remained in |1〉, and barely
another 4% has leaked to |4〉.

In the case of narrowband lasers, the best transfer
would occur at two-photon resonance, ω1 − ω2 = E2 −
E0 = 6BX . The bandwidth of the ultrafast laser pulses

Table III. Parameters used for the numerical evolution shown
in Fig. 6 of the five-level system described by Eq. (C1), in
units of BX .

Parameter Ω̃ ΓA ∆ t0 τ ω1 ω2 φ2 − φ1 δstirap
Value 104 10−4 Ω̃ 4 0.02 3600 3598 1.34 rad −0.016

certainly reduces the need to meet this condition. In fact,
we have observed that tuning ω1−ω2 allows modification
of the final population distribution between |0〉 and |2〉
without notably populating any undesired state. A simi-
lar tuning can be realized with the pulse phases, φ1,2, as
well.

Translating the values given in Table III to the case
of CaH (KRb), we find that pulses of duration τ =
0.16 (18) ps, with a delay δstirap = −0.13 (−14) ps, fo-
cused to a beam waist of 100 µm with an energy per
pulse E = 76 (15) nJ, would do the job, parameters
which fall within experimental capabilities in current ex-
periments [27, 81].

Appendix D: Sensitivity to some experimental
uncertainties

1. Temperature and micromotion

The description of the system in terms of its normal
modes relies on the assumption that ion and molecule dis-
placements, δx, from their trap minima (defined taking
into account the ion-dipole coupling, IDC) are small,

(δx)thermal � aHO , (D1)

with aHO the corresponding harmonic oscillator length.
Note that this requirement is less stringent than demand-
ing that the motional state be the trap’s ground state
(nc.m.,str = 0). Now, as long as this harmonic approxi-
mation remains valid, the geometric character of the ac-
cumulated phase φ ensures that temperature should not
be a concern [25, 36, 37], as all thermal states will acquire
the same (geometric) phase and provide the same signal.

Regarding micromotion, this will be a relevant source
of uncertainty if the micromotion amplitude is of the or-
der of, or larger than, the ion-dipole separation z0, as
this would mean that the ion would generally be mis-
aligned with respect to the EDM axis, and a more elab-
orate study of the excitation modes would be necessary.
Because of this, micromotion should be reduced to ensure
that

(δx)micromotion � z0 . (D2)

Experimentally, one can modify the ion-trap potentials
to reduce micromotion amplitude or, more simply, keep
z0 larger than the expected micromotion amplitude; in
both cases, micromotion effects can be neglected.
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2. Sensitivity to ion-dipole misalignment

With respect to the alignment of µ with the z axis
defined by the ion position, it can be seen (cf. Fig.
2 in [28]) that the effective potential where the ion is
placed—formed by its own trapping fields plus the ef-
fect of IDC—is very smooth around the minimum. One
needs a displacement along x, y of magnitude & z0/10
to be sensitive to this source of error. When this hap-

pens, the exact decoupling of the dynamics in the three
directions (x, y, z) will no longer hold. This can be seen
as an effective coupling between the c.m. and str modes
in (x, y) and those along z. Such effects should be-

come apparent only for times & ω−1
√
z0/(r⊥α̃) which

are� ω−1 under the assumption above of small displace-

ments, r⊥ :=
√
x2 + y2 � z0. Here, α̃ = ~α/(mω2z20)

[cf. (A5)] is a dimensionless parameter comparing the
IDC energy with the trapping energy; typically, α̃ � 1
(cf. [28]).
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