84 research outputs found
Transition Planes for Visual Comfort: Out View with Complex Fenestration System Design at Restaurants in Spain
This work deals with daylighting for quality indoor atmospheres, considering building skins. In recent years, almost all retrofit facades of restaurants are highly glazed façades, boosting glare, sun ray absorption and overheating inside. Most of the time, they are not integrated with daylight control; therefore, lighting and out view requirements are not so balanced. Taking into account this daylighting complexity, an alternative façade system is proposed to simulate by Radiance. Previously, perception simulations are compared with measured data, in order to discretize the simulations. In addition, for one point three different view are assessed as: work plane, relation plane and the out plane. Subsequently, two virtual façade models, windows combined by complex fenestration system (CFS) as prismatic film (PF) and highly glazed façade, are tested according to daylighting. For that, three indexes have been used: daylight glare probability (DGP), daylight glare index (DGI) and daylight autonomy (DA). The results show that the proposed complex façade has a good light contribution with less absorption, while maintaining the outside view. In addition, the DGI is needed to test the out plane, because DGP is more suitable for lower luminance; therefore, each visual plane should be assessed regarding different visual comfort conditions, or parameters and methods. Accordingly, the mean DGI result of window combined by CFS is approximately lower in 5% than highly glazed façade. However, the DA of highly glazed is higher in 5%, but the DA of window combined by CFS is enough, above 80%. Definitely, the complex scene at restaurant with the proposed integrated façade system improves light performance and indoor atmosphere.This work is supported by the Postdoc training program of the Basque Government and the funding of Department of Architecture of University of the Basque Country UPV/EHU
Spectrophotometric determination of paracetamol in pharmaceuticals using microwave-assisted hydrolysis and a micellar medium
A new spectrophotometric method employing a micellar medium is proposed for the determination of paracetamol in pharmaceuticals. The method is based on the acid hydrolysis of paracetamol to p-aminophenol (PAP), which under acidic conditions reacts with p-dimethylaminocinnamaldehyde (pDAC), producing a red compound (λmax = 530 nm). This reaction can be enhanced five-fold in the presence of sodium dodecyl sulfate (SDS). The effects of all the parameters involved in both the hydrolysis step and the derivatization reaction were investigated using experimental design methodologies. The method presented a linear range of 0.2 to 3.9 μg mL–1 and an excellent correlation coefficient (r = 0.9996). The limit of detection was estimated to be 30.0 μg/L. The technique was successfully applied for the determination of paracetamol in commercial brands of pharmaceuticals. No interferences from the excipients commonly used in commercial formulations were observed, and the results obtained compared favorably with measurements made using the United States Pharmacopeia procedure, at a 95 % confidence level.Colegio de Farmacéuticos de la Provincia de Buenos Aire
Population overlap and habitat segregation in wintering Black-tailed Godwits Limosa limosa
Distinct breeding populations of migratory species may overlap both spatially and temporally, but differ in patterns of habitat use. This has important implications for population monitoring and conservation. To quantify the extent to which two distinct breeding populations of a migratory shorebird, the Black-tailed Godwit Limosa limosa, overlap spatially, temporally and in their use of different habitats during winter. We use mid-winter counts between 1990 and 2001 to identify the most important sites in Iberia for Black-tailed Godwits. Monthly surveys of estuarine mudflats and rice-fields at one major site, the Tejo estuary in Portugal in 2005-2007, together with detailed tracking of colour-ringed individuals, are used to explore patterns of habitat use and segregation of the Icelandic subspecies L. l. islandica and the nominate continental subspecies L. l. limosa. In the period 1990-2001, over 66 000 Black-tailed Godwits were counted on average in Iberia during mid-winter (January), of which 80% occurred at just four sites: Tejo and Sado lower basins in Portugal, and Coto Dontildeana and Ebro Delta in Spain. Icelandic Black-tailed Godwits are present throughout the winter and forage primarily in estuarine habitats. Continental Black-tailed Godwits are present from December to March and primarily use rice-fields. Iberia supports about 30% of the Icelandic population in winter and most of the continental population during spring passage. While the Icelandic population is currently increasing, the continental population is declining rapidly. Although the estuarine habitats used by Icelandic godwits are largely protected as Natura 2000 sites, the habitat segregation means that conservation actions for the decreasing numbers of continental godwits should focus on protection of rice-fields and re-establishment of freshwater wetlands
Determination of ambroxol in syrups using diffuse reflectance spectroscopy
This paper reports an analytical method for the determination of ambroxol in micellar medium by spot test-diffuse reflectance spectroscopy. The reflectance measurements were performed analyzing the colored compound (λ= 520 nm) produced from the reaction between ambroxol and p-dimethylaminocinnamaldehyde on the surface filter paper. The linear range was from 1.21 × 10"3 to 9.65 × 10"3 mol L-1 (500 - 4000 μg mL-1). The limit of detection and quantification were 3.50 x 10-4 mol L-1 (145 μg mL-1) and 1.16 x 10-3 mol L-1 (481 μg mL-1), respectively. Five commercial samples were analysed and the results obtained by the proposed method were in good agreement with those obtained by the literature method at 95% confidence level
Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells
Maslinic acid (MA) is a natural triterpene present in high concentrations in the waxy skin of olives. We have previously reported that MA induces apoptotic cell death via the mitochondrial apoptotic pathway in HT29 colon cancer cells. Here, we show that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner. MA triggered a series of effects associated with apoptosis, including the cleavage of caspases -8 and -3, and increased the levels of t-Bid within a few hours of its addition to the culture medium. MA had no effect on the expression of the Bax protein, release of cytochrome-c or on the mitochondrial membrane potential. This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line. Our results suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 colon-cancer cells, and that in Caco-2 cells MA seems to work independently of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin.This study was supported by grants Group BIO 157 from the Technology and Innovation Council of the Andalucian regional government and AGL2006-12210-C03-02/ALI, SAF2005-01627, ISCIII-RTICC (RD06/0020/0046) from the Spanish government and European Union FEDER funds
Sequential injection analysis system with spectrophotometric detection for determination of norfloxacin and ciprofloxacin in pharmaceutical formulations
This work proposes a sequential injection analysis (SIA) system for the spectrophotometric determination of norfloxacin (NOR) and ciprofloxacin (CIP) in pharmaceutical formulations. The methodology was based on the reaction of these drugs with p-(dimethylamino)cinnamaldehyde in micellar medium, producing orange colored products (λmax = 495 nm). Beer´s law was obeyed in the concentration range from 2.75x10-5 to 3.44x10-4 mol L-1 and 3.26x10-5 to 3.54x10-4 mol L-1 for NOR and CIP, respectively and sampling rate was 25 h-1. Commercial samples were analyzed and results obtained through the proposed method were in good agreement with those obtained using the reference procedure for a 95% confidence level
Introducing the INSIGNIA project: environmental monitoring of pesticide use through honey bees
INSIGNIA aims to design and test an innovative, non-invasive, scientifically proven citizen science environmental monitoring protocol for the detection of pesticides by honey bees. It is a 30-month pilot project initiated and financed by the EC (PP-1-1-2018; EC SANTE). The study is being carried out by a consortium of specialists in honey bees, apiculture, statistics, analytics, modelling, extension, social science and citizen science from twelve countries. Honey bee colonies are excellent bio-samplers of biological material such as nectar, pollen and plant pathogens, as well as non-biological material such as pesticides or airborne contamination. Honey bee colonies forage over a circle of 1 km radius, increasing to several km if required, depending on the availability and attractiveness of food. All material collected is accumulated in the hive.The honey bee colony can provide four main matrices for environmental monitoring: bees, honey, pollen and wax. Because of the non-destructive remit of the project, for pesticides, pollen is the focal matrix and used as trapped pollen and beebread in this study. Although beeswax can be used as a passive sampler for pesticides, this matrix is not being used in INSIGNIA because of its polarity dependent absorbance, which limits the required wide range of pesticides to be monitored. Alternatively, two innovative non-biological matrices are being tested: i) the “Beehold tube”, a tube lined with the generic absorbent polyethylene-glycol PEG, through which hive-entering bees are forced to pass, and ii) the “APIStrip” (Absorbing Pesticides In-hive Strips) with a specific pesticide absorbent which is hung between the bee combs.Beebread and pollen collected in pollen traps are being sampled every two weeks to be analysed for pesticide residues and to record foraging conditions. Trapped pollen provides snapshots of the foraging conditions and contaminants on a single day. During the active season, the majority of beebread is consumed within days, so beebread provides recent, random sampling results. The Beehold tube and the APIStrips are present throughout the 2-weeks sampling periods in the beehive, absorbing and accumulating the incoming contaminants. The four matrices i.e. trapped pollen, beebread, Beehold tubes and APIStrips will be analysed for the presence of pesticides. The botanical origin of trapped pollen, beebread and pollen in the Beehold tubes will also be determined with an innovative molecular technique. Data on pollen and pesticide presence will then be combined to obtain information on foraging conditions and pesticide use, together with evaluation of the CORINE database for land use and pesticide legislation to model the exposure risks to honey bees and wild bees. All monitoring steps from sampling through to analysis will be studied and rigorously tested in four countries in Year 1, and the best practices will then be ring-tested in nine countries in Year 2. Information about
the course of the project, its results and publications will be available on the INSIGNIA website www.insignia-bee.eu and via social media: on Facebook (https://www.facebook.com/insigniabee.eu/); Instagram insignia_bee); and Twitter (insignia_bee). Although the analyses of pesticide residues and pollen identification will not be completed until December 2019, in my talk I will present preliminary results of the Year 1 sampling.info:eu-repo/semantics/publishedVersio
Introducing the INSIGNIA project: Environmental monitoring of pesticides use through honey bees
INSIGNIA aims to design and test an innovative, non-invasive, scientifically proven citizen science environmental monitoring protocol for the detection of pesticides via honey bees. It is a pilot project initiated and financed by the European Commission (PP-1-1-2018; EC SANTE). The study is being carried out by a consortium of specialists in honey bees, apiculture, chemistry, molecular biology, statistics, analytics, modelling, extension, social science and citizen science from twelve countries. Honey bee colonies are excellent bio-samplers of biological material such as nectar, pollen and plant pathogens, as well as non-biological material such as pesticides or airborne contamination. Honey bee colonies forage over a circle of about 1 km radius, increasing to several km if required depending on the availability and attractiveness of food. All material collected is concentrated in the hive, and the honey bee colony can provide four main matrices for environmental monitoring: bees, honey, pollen and wax. For pesticides, pollen and wax are the focal matrices. Pollen collected in pollen traps will be sampled every two weeks to record foraging conditions. During the season, most of pollen is consumed within days, so beebread can provide recent, random sampling results. On the other hand wax acts as a passive sampler, building up an archive of pesticides that have entered the hive. Alternative in-hive passive samplers will be tested to replicate wax as a “pesticide-sponge”. Samples will be analysed for the presence of pesticides and the botanical origin of the pollen using an ITS2 DNA metabarcoding approach. Data on pollen and pesticides will be then be combined to obtain information on foraging conditions and pesticide use, together with evaluation of the CORINE database for land use and pesticide legislation to model the exposure risks to honey bees and wild bees. All monitoring steps from sampling through to analysis will be studied and tested in four countries in year 1, and the best practices will then be ring-tested in nine countries in year 2. Information about the course of the project and its results and publications will be available in the INSIGNIA website www.insignia-bee.eu.info:eu-repo/semantics/publishedVersio
Soil cover plants on water erosion control in the South of Minas Gerais
Water erosion is responsible for soil, water, carbon and nutrient losses, turning into the most important type of degradation of Brazilian soils. This study aimed to evaluate the influence of three cover plants under two tillage systems on water erosion control in an Argisol at south of Minas Gerais state, Brazil. The cover plants utilized in the study were pigeon pea, jack bean and millet, under contour seeding and downslope tillage. Experimental plots of 4 x 12 m, with 9% slope, under natural rainfall were used for the quantification of losses of soil, water, nutrients, and organic matter. One experimental plot was kept without plant cover (reference). Higher erosivity was observed in December and January, although a great quantity of erosive rainfall was detected during the whole raining period. Contour seeding provided a greater reduction of water erosion than downslope tillage, as expected. The jack bean under contour seeding revealed the lowest values of soil, water, nutrients and organic matter losses
- …