454 research outputs found

    On the suitability of baked clay for archaeomagnetic studies as deduced from detailed rock-magnetic studies

    Get PDF
    Extensive rock-magnetic investigations have been carried out on baked clays from four kilns (two from Bulgaria and two from Switzerland) found in archaeological sites of different age. Knowledge of the magnetic characteristics of the grains responsible for the archaeomagnetic signal enables us to determine which baked clays have the stablest magnetization and why this is so. This is important in directional studies, but even more so in painstaking palaeointensity studies that require a very careful evaluation of the suitability of the burnt clay material. The proposed rock-magnetic experiments enable the identification of the carriers responsible for the remanence and an adequate interpretation of the experimental results connected with the palaeointensity evaluation. The experimental methods employed are illustrated with the particular results obtained from each of the four kilns studied. The preliminary elucidation of the magnetic mineralogy of the archaeological samples helps first by obtaining a more reliable palaeointensity result, and secondly by explaining some of the discrepancies in the palaeodirectional results. Examples of successful and failed palaeointensity experiments are given in relation to the magnetic properties previously established for each oven. The burnt-clay materials in this present study satisfy the essential condition of carrying a thermoremanence. In spite of that, it is shown that there are many factors that can produce undesirable magnetic properties and thus restrict the suitability of these materials for archaeomagnetic analysis. The most important factors influencing the magnetic behaviour during magneto-diagnostic experiments are: the degree of heating in antiquity, the initial composition of the unbaked material and the burial conditions. The large difference in heating temperatures within a particular archaeological feature is a major cause of variation in magnetic behaviour amongst individual specimens, and so preventing a successful pre-selection of specimens for palaeointensity experiments. Nevertheless, the study has shown a very good coincidence between the determined rock-magnetic characteristics and the success rate in palaeointensity evaluatio

    Psychophysiological Characteristics of Children with Dyslexia

    Get PDF
    Dyslexia is a specific learning disorder that involves difficulty reading due to decoding problems for letters and words. Statistics shows that 5-10% of the general population has dyslexia. The aetiology of reading disorder supposes some biological causes and morphological markers useful in the classification and early identification of the problem.The aim of this article is to find appropriate parameters, which will be useful for early diagnosis and finding the right modalities for treatment.Our findings about QEEG characteristics are not conclusive. However, slowing of brain activity in dyslexic children appeared to be confirmed. These findings lead to the possible hypothesis of delay in neurological development of these children. Significant theta/beta ratio suggest possible comorbidity with ADHD.Further research with more children included is proposed

    Extended and revised archaeomagnetic database and secular variation curves from Bulgaria for the last eight millennia

    No full text
    International audienceThe efforts of geophysicists to describe geomagnetic field behaviour in the past lead to creation of different geomagnetic field models. On the other hand, the established regional palaeosecular variations of geomagnetic elements are increasingly used for dating purposes in archaeology. Both of these goals can be achieved if sufficient amounts of long archaeomagnetic data sets exist for different geographical regions. The accumulation of archaeomagnetic determinations began at the middle of the last century, parallel with the progressive development of experimental methodology and acceptance criteria. The presence of great number of old determinations requires their critical assessment. The important question about the reliability of the associated dating intervals should be also re-assessed. All this requires the continuous refinement and extension of the accumulated databases. This paper presents the last synthesis of Bulgarian archaeomagnetic database and the local palaeosecular variation curves obtained using a statistical treatment based on Bayesian approach (RenCurve software). The rock-magnetic characteristics of the newly included, non-published results are summarized

    Application and testing of the L neural network with the self-consistent magnetic field model of RAM-SCB

    Get PDF
    Abstract We expanded our previous work on L neural networks that used empirical magnetic field models as the underlying models by applying and extending our technique to drift shells calculated from a physics-based magnetic field model. While empirical magnetic field models represent an average, statistical magnetospheric state, the RAM-SCB model, a first-principles magnetically self-consistent code, computes magnetic fields based on fundamental equations of plasma physics. Unlike the previous L neural networks that include McIlwain L and mirror point magnetic field as part of the inputs, the new L neural network only requires solar wind conditions and the Dst index, allowing for an easier preparation of input parameters. This new neural network is compared against those previously trained networks and validated by the tracing method in the International Radiation Belt Environment Modeling (IRBEM) library. The accuracy of all L neural networks with different underlying magnetic field models is evaluated by applying the electron phase space density (PSD)-matching technique derived from the Liouville\u27s theorem to the Van Allen Probes observations. Results indicate that the uncertainty in the predicted L is statistically (75%) below 0.7 with a median value mostly below 0.2 and the median absolute deviation around 0.15, regardless of the underlying magnetic field model. We found that such an uncertainty in the calculated L value can shift the peak location of electron phase space density (PSD) profile by 0.2 RE radially but with its shape nearly preserved. Key Points L* neural network based on RAM-SCB model is developed L* calculation accuracy is estimated by PSD matching using RBSP data L* uncertainty causes a radial shift in the electron phase space density profile

    IFMIF suitability for evaluation of fusion functional materials

    Get PDF
    The International FusionMaterials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusionmaterials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is planned in the IFMIF reference design. This paper focuses on the assessment of the suitability of IFMIF irradiation conditions for testing functionalmaterials to be used in liquid blankets and diagnostics systems, since they are been also considered within IFMIF objectives. The study has been based on the analysis and comparison of the main expected irradiation parameters in IFMIF and DEMO reactor

    Immune Cell Infiltrate in Chronic-Active Antibody-Mediated Rejection

    Get PDF
    Background: Little is known about immune cell infiltrate type in the kidney allograft of patients with chronic-active antibody-mediated rejection (c-aABMR). Methods: In this study, multiplex immunofluorescent staining was performed on 20 cases of biopsy-proven c-aABMR. T-cell subsets (CD3, CD8, Foxp3, and granzyme B), macrophages (CD68 and CD163), B cells (CD20), and natural killer cells

    Energy Content of the Stormtime Ring Current

    Get PDF
    Given the important role the ring current plays in magnetospheric energetics, it is essential to understand its strength and evolution in disturbed times. There are currently three main methods for deducing the strength of the ring current: measuring ground magnetic perturbations, measuring high-altitude magnetic perturbations, or directly measuring ring current particles. The use of ground magnetometers is the most convenient, and many use the ground magnetometer-derived Dst index as a proxy for the ring current. Recent work suggests, however, that a substantial portion of Dst may not be caused only by the ring current but also by local induction effects or other magnetospheric currents, so simply using the Dst index may yield inaccurate results. This study uses direct particle measurements to calculate the strength of the ring current and compares this to the measured Dst values. We investigate several magnetic storm intervals, using the Polar Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) to measure ring current ions. We then use the Dessler-Parker-Sckopke relation to compare this to the measured Dst. This analysis is used both to understand the general behavior of the ring current compared to Dst as well as to compare the usefulness of the Dst proxy for different types of storms. Ring current ions are shown in this analysis to contribute, on average, half of the Dst depression, with a large variation among individual events

    Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer

    Get PDF
    BACKGROUND: Cervical carcinoma develops as a result of multiple genetic alterations. Different studies investigated genomic alterations in cervical cancer mainly by means of metaphase comparative genomic hybridization (mCGH) and microsatellite marker analysis for the detection of loss of heterozygosity (LOH). Currently, high throughput methods such as array comparative genomic hybridization (array CGH), single nucleotide polymorphism array (SNP array) and gene expression arrays are available to study genome-wide alterations. Integration of these 3 platforms allows detection of genomic alterations at high resolution and investigation of an association between copy number changes and expression. RESULTS: Genome-wide copy number and genotype analysis of 10 cervical cancer cell lines by array CGH and SNP array showed highly complex large-scale alterations. A comparison between array CGH and SNP array revealed that the overall concordance in detection of the same areas with copy number alterations (CNA) was above 90%. The use of SNP arrays demonstrated that about 75% of LOH events would not have been found by methods which screen for copy number changes, such as array CGH, since these were LOH events without CNA. Regions frequently targeted by CNA, as determined by array CGH, such as amplification of 5p and 20q, and loss of 8p were confirmed by fluorescent in situ hybridization (FISH). Genome-wide, we did not find a correlation between copy-number and gene expression. At chromosome arm 5p however, 22% of the genes were significantly upregulated in cell lines with amplifications as compared to cell lines without amplifications, as measured by gene expression arrays. For 3 genes, SKP2, ANKH and TRIO, expression differences were confirmed by quantitative real-time PCR (qRT-PCR). CONCLUSION: This study showed that copy number data retrieved from either array CGH or SNP array are comparable and that the integration of genome-wide LOH, copy number and gene expression is useful for the identification of gene specific targets that could be relevant for the development and progression in cervical cancer

    James Hutton’s geological tours of Scotland : romanticism, literary strategies, and the scientific quest

    Get PDF
    This article explores a somewhat neglected part of the story of the emergence of geology as a science and discourse in the late eighteenth century – James Hutton’s posthumously published accounts of the geological tours of Scotland that he undertook in the years 1785 to 1788 in search of empirical evidence in support of his theory of the Earth and that he intended to include in the projected third volume of his Theory of the Earth of 1795. The article brings some of the assumptions and techniques of literary criticism to bear on Hutton’s scientific travel writing in order to open up new connections between geology, Romantic aesthetics and eighteenth-century travel writing about Scotland. Close analysis of Hutton’s accounts of his field trips to Glen Tilt, Galloway and Arran, supplemented by later accounts of the discoveries at Jedburgh and Siccar Point, reveals the interplay between desire, travel and the scientific quest and foregrounds the textual strategies that Hutton uses to persuade his readers that they share in the experience of geological discovery and interpretation as ‘virtual witnesses’. As well as allowing us to revisit the interrelation between scientific theory and discovery, this article concludes that Hutton was a much better writer than he has been given credit for and suggests that if these geological tours had been published in 1795 they would have made it impossible for critics to dismiss him as an armchair geologist

    The reliability and validity of DSM 5 diagnostic criteria for neurocognitive disorder and relationship with plasma neurofilament light in a down syndrome population

    Get PDF
    The validity of dementia diagnostic criteria depends on their ability to distinguish dementia symptoms from pre-existing cognitive impairments. The study aimed to assess inter-rater reliability and concurrent validity of DSM-5 criteria for neurocognitive disorder in Down syndrome. The utility of mild neurocognitive disorder as a distinct diagnostic category, and the association between clinical symptoms and neurodegenerative changes represented by the plasma biomarker neurofilament light were also examined. 165 adults with Down syndrome were included. Two clinicians independently applied clinical judgement, DSM-IV, ICD-10 and DSM-5 criteria for dementia (or neurocognitive disorder) to each case. Inter-rater reliability and concurrent validity were analysed using the kappa statistic. Plasma neurofilament light concentrations were measured for 55 participants as a marker of neurodegeneration and between group comparisons calculated. All diagnostic criteria showed good inter-rater reliability apart from mild neurocognitive disorder which was moderate (k = 0.494). DSM- 5 criteria had substantial concurrence with clinical judgement (k = 0.855). When compared to the no neurocognitive disorder group, average neurofilament light concentrations were higher in both the mild and major neurocognitive disorder groups. DSM-5 neurocognitive disorder criteria can be used reliably in a Down syndrome population and has higher concurrence with clinical judgement than the older DSM-IV and ICD-10 criteria. Whilst the inter-rater reliability of the mild neurocognitive disorder criteria was modest, it does appear to identify people in an early stage of dementia with underlying neurodegenerative changes, represented by higher average NfL levels
    • 

    corecore