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Application and testing of the L∗ neural network
with the self-consistent magnetic field model
of RAM-SCB
Yiqun Yu1, Josef Koller1, Vania K. Jordanova1, Sorin G. Zaharia1, Reinhard W. Friedel1,
Steven K. Morley1, Yue Chen1, Daniel Baker2, Geoffrey D. Reeves1, and Harlan E. Spence3

1Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 2Laboratory for Atmospheric and Space Physics,
University of Colorado Boulder, Boulder, Colorado, USA, 3Space Plasma Physics, University of New Hampshire, Durham,
New Hampshire, USA

Abstract We expanded our previous work on L∗ neural networks that used empirical magnetic field
models as the underlying models by applying and extending our technique to drift shells calculated from a
physics-based magnetic field model. While empirical magnetic field models represent an average, statistical
magnetospheric state, the RAM-SCB model, a first-principles magnetically self-consistent code, computes
magnetic fields based on fundamental equations of plasma physics. Unlike the previous L∗ neural networks
that include McIlwain L and mirror point magnetic field as part of the inputs, the new L∗ neural network only
requires solar wind conditions and the Dst index, allowing for an easier preparation of input parameters.
This new neural network is compared against those previously trained networks and validated by the
tracing method in the International Radiation Belt Environment Modeling (IRBEM) library. The accuracy of
all L∗ neural networks with different underlying magnetic field models is evaluated by applying the electron
phase space density (PSD)-matching technique derived from the Liouville’s theorem to the Van Allen Probes
observations. Results indicate that the uncertainty in the predicted L∗ is statistically (75%) below 0.7 with a
median value mostly below 0.2 and the median absolute deviation around 0.15, regardless of the
underlying magnetic field model. We found that such an uncertainty in the calculated L∗ value can
shift the peak location of electron phase space density (PSD) profile by 0.2 RE radially but with its shape
nearly preserved.

1. Introduction

The dimensionless L∗ parameter [Roederer, 1970] describes the guiding drift shell for a trapped charged par-
ticle that undergoes the cyclotron, bounce, and drift motions with appropriate adiabatic invariants inside
the magnetosphere. L∗ is inversely proportional to the third adiabatic invariant, i.e., the magnetic flux Φ
encompassed within the drift shell L∗ = 2πM∕|Φ|RE , where M is the Earth’s dipole magnetic moment and RE

is the Earth’s radius. In a dipolar magnetosphere, the value of L∗ is equal to the equatorial crossing distance
of the magnetic field line normalized to RE . In radiation belt studies, using phase space density (PSD) in adi-
abatic coordinates (𝜇, K , L∗) allows one to examine nonadiabatic effects on the energetic electron dynamics
[e.g., Selesnick and Blake, 1998; Green and Kivelson, 2004; Koller et al., 2007; Gannon et al., 2012; Turner et al.,
2012; Reeves et al., 2013], and hence help identify the responsible loss/source mechanisms for radiation belt
dynamics. As one of the three adiabatic coordinates, L∗ is of great importance to radiation belt studies.

At present three methods have been used to calculate the L∗ quantity: (1) the conventional approach
described in Roederer [1970], which is numerically implemented in the Fortran library called International
Radiation Belt Environment Modeling (IRBEM) library (http://sourceforge.net/projects/irbem/) and a C
library called LANLGeoMag recently developed at Los Alamos National Laboratory [Henderson et al., 2011]
with higher precision in tracing the magnetic field lines based on particle’s guiding center equation of
motion; (2) an efficient method using the UBK coordinate system with the principle of energy conservation
[Min et al., 2013a, 2013b], and (3) the L∗ artificial neural network [Koller et al., 2009; Koller and Zaharia, 2011;
Yu et al., 2012] trained with different underlying empirical magnetic field models (http://lanlstar.net). The
first approach, in virtue of numerical tracing, is slow because it involves iterative searching of global mag-
netic field lines with the same magnetic field magnitude at the mirror point and the same second adiabatic
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invariant. In contrast, the UBK method is capable of quickly, accurately determining the drift shell but only
after a computationally expensive preparatory step for each time step to be calculated.

The third method takes inputs including the solar wind and geomagnetic conditions, the McIlwain L param-
eter [Roederer, 1970], and the magnetic field at the mirror points, and uses a neural network to efficiently
predict L∗ with reasonable accuracy within microseconds. This study aims to expand this L∗ neural network
capability from empirical to physics-based magnetic field models. In this work, the inner magnetosphere
model RAM-SCB (section 2) is used for generating the L∗ neural network. For the previous neural networks,
the preparation of some inputs, such as the McIlwain L parameter and the magnetic field at the mirror point
has a computational cost, since McIlwain L requires field line tracing numerically. This study will however
discard these two input requirements but increase the complexity of the network structure to preserve
accuracy. The above methods (2) and (3) have been validated against the first method and both are found
to be as consistent [Min et al., 2013a; Yu et al., 2012]. However, owing to the fact that there exist no direct
measurements of L∗ in reality, the accuracy of L∗ obtained from our new method is still unclear. This study
will therefore employ the PSD-matching technique developed in Chen et al. [2007] to estimate the error of
L∗ computed from different artificial neural networks.

2. Physics-Based RAM-SCB Model

The magnetically self-consistent inner magnetosphere model RAM-SCB couples the kinetic ring
current-atmosphere interactions model (RAM) [Jordanova et al., 1994, 2006, 2010] with the 3-D equilibrium
magnetic field code [Zaharia et al., 2004, 2006; Zaharia, 2008]. The domain of the RAM code is confined
within geosynchronous orbit with its plasma boundary specified by energetic particle flux measurements
from Los Alamos National Laboratory (LANL) geosynchronous satellites, after interpolating the data over the
gaps in magnetic local times. The transport of the particles is mainly governed by gradient-curvature drift
and convective drift, which are controlled by the dynamic electric and magnetic fields. The convective elec-
tric field can be specified by empirical models such as the Weimer electric potential model [Weimer, 2001] or
the Volland-Stern electric field model [Volland, 1973; Stern, 1975].

The 3-D magnetic field code solves a plasma force-balanced equation 𝐉 × 𝐁 = ∇ ⋅ 𝐏 in flux coordinates
(Euler potentials) where 𝐏 is the pressure tensor, and 𝐉 is the current density. The magnetic field bound-
ary condition at the geosynchronous orbit can be specified by an empirical magnetic field model [e.g.,
Tsyganenko, 1989; Tsyganenko and Sitnov, 2005]. The plasma anisotropic pressure produced from the
moments of the ring current particle distribution function in RAM is passed to the 3-D magnetic field code,
which in turn provides the magnetic field information to the ring current model.

We ran the RAM-SCB model from 1 January 2001 to 1 January 2007 with 5 min cadence using LANL flux
observations and T89 magnetic fields for the plasma and magnetic field boundaries, respectively, and
the Weimer electric potential model to provide necessary electric field. The simulated global magnetic
field configuration was saved at each time step for the field line tracing and L∗ calculation, through the
IRBEM library.

3. Feed-Forward Neural Network Multilayer Perceptron

The application of an artificial neural network allows one to unfold the complicated causal relationship
between a driver and a response inside a nonlinear system like the terrestrial magnetosphere. Various neu-
ral network architectures can be chosen to establish the driver-response (input-output) relationship. This
study uses a feed-forward multilayer neural network that consists of several computational units with inter-
connections in a feed-forward way, as illustrated in Figure 1. The first layer, composed of input parameters Xi ,
which are listed in the next paragraph, for the determinative yield of output layer, is connected to a hidden
layer through weights wij , biases bj , and an activation function f :

hj = f

(
N−1∑
i=0

Xiwij + bj

)
, (1)

The outcome at the hidden layer hj is further used as the input for the next interconnection linking to the
output layer. The hidden layer in this study is designed to have two sublayers with 60 and 20 neurons,
respectively. To determine the size of a hidden layer, we carried out several training cases with different
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Figure 1. The architecture of a multilayer feed-forward neural net-
work. (left) The input layer, containing the solar wind condition and
the Dst index; (middle) hidden layer is composed of two sublayers,
each with 60 and 20 neurons, respectively; (right) the output layer,
i.e., L∗ .

sizes of the hidden layer and chose the one
with the smallest generalization error (i.e.,
running the trained network on a test data
set that is not used in the network train-
ing or validation and determining the error
between the network result and the target
in the test data set).

While the output layer consists of one single
neuron representing L∗, the input layer con-
tains 11 parameters, including time (year,
day of year, hour), location (in SM Cartesian
coordinates), solar wind dynamic pressure,
ByIMF, BzIMF, the Dst index, and pitch angle.
These solar wind parameters and the Dst
index are chosen as the neural network
input because they are required inputs for
the RAM-SCB model. Unlike the previous
study from Yu et al. [2012] that included the

McIlwain L and the mirror point magnetic field in the input layer, this feed-forward neural network only takes
into account external solar wind driving and the Dst index as the responsible driving (input) to achieve the
subsequent L∗ value, for the purpose of better representing the relationship between the solar wind drivers
and the internal response as well as for an easier preparation of the inputs. Consequently, the whole process,
including the preparation of the input and the calculation of L∗, is much easier than the previous net-
works because the above two input parameters would take appreciable time to be calculated through the
IRBEM library.

The generation of an L∗ neural network follows two steps: (1) sampling adequate input-target patterns and
(2) training/learning the relationship between the input and target, i.e., creating the neural network. We
produce 67,000 input-target sampling patterns from the IRBEM library. The location of the input parame-
ters is randomly sampled inside the magnetospheric domain between 2.5 and 6.5 RE spherically, each also
corresponding to a random time between 1 January 2001 and 1 January 2007 and a random pitch angle
between 10◦ and 90◦. The input solar wind condition and Dst index at the selected time are taken from
the 1 h resolved OMNI database. With these inputs we compute the L∗ target using the IRBEM library (from
http://sourceforge.net/projects/irbem/, revision number 307, with latitudinal and longitudinal resolutions
being 0.05◦ and 2.8◦, respectively, i.e., the third and fourth elements in the input array “options” are both 4)
based on the global magnetospheric configuration from the RAM-SCB model. From these 67,000 sampling
patterns, 40,000 patterns are randomly chosen for the training of the neural network. These training sam-
ples cover a wide range of input conditions (Figure 2, grey bars), with Dst mostly distributed above −100 nT,
the solar wind dynamic pressure below 10 nPa, |Bz| and |By| below 10 nT, and the pitch angle nearly evenly
distributed among 10 and 90◦.

The learning of the relationship between the input and the target L∗ begins with an initial guess of the
weights associated with each connection in the network. The learning process evolves with iterative adjust-
ment of the weights until the mean-squared error between the L∗ output and the prescribed L∗ target
approaches a given tolerance of 10−8. Such a process is called supervised learning. The obtained weights
and bias on each neuron define the final structure of a neural network.

4. Validation

To examine the applicability of the above neural network, two types of validation are carried out: (1)
out-of-sample validation and (2) comparison with other L∗ neural networks.

The out-of-sample validation utilizes the remaining 27,000 input-target patterns that are not utilized in the
training process. Figure 2 (white bars) shows that same as the training data pool, this validation data pool
also covers a similar, broad range of solar wind conditions. Figure 2f shows the distribution of the difference
between the target L∗ in the validation data pool, calculated from the RAM-SCB magnetic field configuration
via the IRBEM library, and the output L∗ created from the neural network. Both calculations use the same
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Figure 2. The histogram of training data samples (grey) and validating data samples (white) as a function of (a) Dst, (b) solar wind dynamic pressure, (c) interplan-
etary magnetic field (IMF) Bz, (d) IMF By, and (e) pitch angle. The last plot shows the histogram of difference between the neural network calculated L∗ and that
obtained through the IRBEM library in the validating data set. Also shown are the standard deviation and mean difference between the two methods.

input conditions in the 27,000 samples. This distribution demonstrates a standard deviation as small as 0.06
and a mean difference near zero (∼ 10−5), indicating that the neural network is quite reliable in reproducing
the L∗ value from IRBEM to reasonable accuracy.

We evaluate the geomagnetic activity dependence of this L∗ neural network using the root-mean-square
error (RMSE) as a function of solar wind dynamic pressure, Dst, and Bz (Table 1). The RMSE measures the
difference between the artificial neural network (ANN) generated L∗ANN and IRBEM’s numerical tracing-based
L∗IRBEM in response to the same input:

RMSE =

√√√√ 1
N

N∑
i=1

(L∗ANN − L∗IRBEM)2 (2)

Except for extreme conditions such as Dst < −150 nT, Pdyn > 15 nPa, and |Bz| > 10 nT, the RMSE is mostly
below 0.1, suggesting that for relatively quiet times or moderate storm periods, this neural network can
reproduce L∗ with a fidelity comparable to the IRBEM-tracing method. However, caution may be needed
when using the neural network for highly disturbed times because the neural network is trained from
samples that have poor statistics under those highly disturbed conditions.

Table 1. The Root-Mean-Square Error (RMSE) Between L∗ Calculated From the Neural Network
Trained With the RAM-SCB Magnetic Field Configurations and L∗ Calculated From the IRBEM
Library as a Function of Dst Index, Solar Wind Dynamic Pressure, and the Interplanetary Magnetic
Field Bz Component

Values

Dst (nT) (> 0) (−50, 0) (−100,−50) (−150,−100)
samples 5488 20413 1357 70 Overall
RMSE 0.055 0.062 0.101 0.147

Pdyn (nPa) (0, 5) (5, 10) (10, 15) (15, 20) (20, 25)
samples 26372 944 92 22 13
RMSE 0.060 0.088 0.120 0.178 0.311 RMSE = 0.064

Bz (nT) (>20) (10, 20) (0, 10) (−10, 0) (−20,−10)
samples 9 91 13641 13571 91
RMSE 0.164 0.233 0.062 0.062 0.107

YU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1686
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Figure 3. (top to bottom) L∗ computed from different artificial neural networks, L∗ computed from the IRBEM library, the
relative difference between the above two methods, and the Dst index. The L∗ is calculated with different underlying
magnetic field models including RAM-SCB, T89, T96, T01Storm, and T05. It is computed at a midnight location (−5.5, 0.0,
0.0) RE in SM coordinates with equatorial pitch angle of (left) 90◦ and (right) 50◦.

We further compare this newly trained neural network with those previously trained from empirical mag-
netic field models, to discern any dependence of the L∗ outcome on the underlying magnetic field model.
The neural network computed L∗ is also compared to that created by the IRBEM method. Figure 3 (left
column) shows (a) L∗ANN, from five neural networks with different underlying magnetic field models, for
a particle with 90◦ pitch angle starting at a midnight position (−5.5, 0, 0) RE during a small storm event.
These neural networks provide similar L∗ values with disagreement mostly less than 0.7 between each
other, implying that the neural network is not very sensitive to its underlying magnetic field model during
small storm events and/or that the field models are not significantly different at these times. Also shown
are (b) L∗ computed from the IRBEM method and (c) the relative difference between the two methods. The
IRBEM-calculated L∗ values display similar results among different magnetic field models and the relative
difference between the two methods is below 7%. While T96 model shows larger discrepancy in the storm
main phase, the others have smaller differences (mostly below 3%) between the two methods. This again
indicates the reliability of the neural network in reproducing IRBEM results in quiet or moderately disturbed
time. Figure 3 (right column) shows the same parameters during the same event but for a pitch angle of 50◦.
Similarly, the L∗ difference either between different neural networks or between the two methods is small.

However, this is not such a case in highly disturbed time (not shown) Because of the limitation of the neural
network in representing extreme conditions, the uncertainty in the L∗ is significantly increased when Dst is
below −150 nT. This suggests that for the above circumstances, the L∗ neural network is not as reliable as
during less disturbed time. However, all of the underlying statistical magnetic field models themselves are
least reliable during very active times. In this sense, a physics-based model could probably provide a better
representation of the magnetospheric configuration for a specific storm event.

5. Estimating the Error of L∗ Calculation

L∗ calculations are usually embedded with uncertainties, because such calculations are associated with
a global magnetospheric field configuration produced by an empirical or physics-based magnetic field
model, which itself has uncertainties that are difficult to quantify. An empirical global magnetic field model
represents a statistical, average magnetosphere, while a physics-based first-principles model may include
incomplete physical processes, and model uncertainty due to numerical approximation and discretization is

YU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1687
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Figure 4. (top) The PSD observed by Van Allen Probes sorted in L∗ space
during quiet time 3–4 January 2013 with 𝜇 = 2760 MeV∕G and K = 0.13
G1∕2 RE . (bottom) Black dots represent the matching ratio of two PSDs
at conjunction points with the same adiabatic coordinates (𝜇, K , L∗), and
red triangles represent the L∗ error, |𝛿L∗|, computed by equation (3). The
neural network trained with T05 model is used for the L∗ calculation.

inevitable. The computed L∗ that
carries the information of global mag-
netic fields thus accumulates these
uncertainties, which is likely to influ-
ence the interpretation of the physics
of the radiation belt [Green and
Kivelson, 2004; Chen et al., 2007;
Huang et al., 2008; McCollough et al.,
2008; Yu et al., 2012]. Green and
Kivelson [2004] discussed that L∗

uncertainties could result in a shift in
the phase space density (PSD) radial
profile, without changing its shape.
This implies that the accuracy of L∗

could influence the determination of
the PSD peak location or the location
where the energization/acceleration
of energetic electrons occurs in the
inner magnetosphere.

Chen et al. [2007] developed a method for determining the accuracy of L∗ calculation by means of
PSD-matching technique. Following equation (6) in Chen et al. [2007], the L∗ error can be quantified by

∣ 𝛿L∗ ∣= R − 1
R + 1

(
∣ 𝜕f
𝜕L∗

∕2f̄ ∣
)−1

(3)

Figure 5. Box-whisker plots of drift shell error 𝛿L∗ calculated from different neural networks at different 𝜇 values with
K = 0.13 G1∕2 RE . The red line marks the median value of the error data set. The bottom and top of the box indicate 25th
and 75th percentile, respectively. The whiskers extend to the most extreme data points within 1.5 times the interquartile
range (IQR) outside the lower and upper quartiles. The numerical number under each box represents the median value
± MAD (median absolute deviation).

YU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1688
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Figure 6. (a) The distribution of L∗ , (b) the distribution of the phase space density (PSD), (c) local magnetic field mag-
nitude at (−6.5, 0.0, 0.0) RE , and (d) PSD as a function of L∗ with 𝜇 = 523 MeV∕G and K = 0.11 G1∕2 RE , obtained from
100 magnetosphere configurations created by small random perturbations on the solar wind speed and density. The red
dot represents the nominal value from the initial magnetosphere that experienced random disturbances. The T96 neural
network is used for L∗ calculation.

where f represents the PSD value, R = f 2∕f 1 is the matching ratio between two PSD data under the same
adiabatic coordinates, with the larger one always on the numerator, and f̄ = (f 1 + f 2)∕2 is the mean of the
two PSD values. In order to use this technique, we should be aware of several sources causing the L∗ error.
The reason for the two PSDs with the same adiabatic coordinates deviating from each other (i.e., the match-
ing ratio R is not equal to one) can result from various error sources, including (1) inaccurate PSD conversion
from flux observations especially in the fitting process (i.e., the fitting error source, as mentioned in Green
and Kivelson [2004]), (2) inadequate satellite intercalibration, (3) large substorm injection that can violate the
Liouville’s theorem based on which equation (3) is derived, (4) errors in the K parameter due to the imperfec-
tion of the magnetic field model, and (5) errors in the L∗ calculation due to the magnetic field model as well
as the training process of the neural network. The error resulting from (1) can be much improved by using a
cubic spline interpolation method in fitting an energy spectrum as reported in Yu et al. [2014]. To avoid, to a
large extent, the potential contribution from error sources (2) and (3), only quiet time periods with small AL
index are chosen for the L∗ error estimation, because the intersatellite “fine-tuned” calibration can produce
trustworthy correction without large influence from substorm injection [Chen et al., 2005]. Finally, with the
assumption that the uncertainty residing in the K parameter is much smaller than in L∗, equation (3) is then
used to evaluate the error of L∗ calculation originating from the neural network technique together with its
corresponding underlying magnetic field model.

Figure 4 demonstrates one example of the PSD at K ≃ 0.13 G1∕2 RE and 𝜇 ≃ 2760 MeV∕G calculated
from electron flux measured by Energetic Particle, Composition, and Thermal Plasma (ECT)-Relativistic
Electron-Proton Telescope (REPT) [Baker et al., 2013; Spence et al., 2013] onboard Van Allen Probes on 3–4
January 2013, the matching ratio R at conjunction points (i.e., same 𝜇, K , L∗) between the two satellites and
the computed drift shell error 𝛿L∗. The REPT instruments are ideally suited to PSD-matching studies as they
have been shown to be well cross calibrated [Morley et al., 2013]. This example employs the neural net-
work with T05 magnetic field model to obtain the L∗. The matching ratios R are mostly below 2.5 and 𝛿L∗

are mostly below 0.5. For a statistical estimate of 𝛿L∗, we use a longer time period from 1 January through
28 February 2013 but exclude those days with AL index below −500 nT (substorm injections). The 𝛿L∗ is
estimated using different neural networks and then is statistically analyzed in Figure 5 for three different 𝜇

YU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1689
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Figure 7. The PSD profile as a function of L∗ with K = 0.1 G1∕2Re at
different 𝜇 values. The five scattered clusters of data points (gray dots)
correspond to PSD(L∗) distributions at five midnight equatorial posi-
tions (i.e., −6.0, −6.5, −7.0, −7.5, and −8.0 RE ). The blue dash line aligns
the minimum L∗ from each data cluster, and the green dash line con-
nects the maximum values. The red dot represents the nominal value
from the initial magnetosphere that experienced random disturbances.
The T96 neural network is used for L∗ calculation.

values. The box-whisker plot helps depict
the degree of dispersion of the data:
the bottom and the top of the box
indicate the 25th and 75th percentile,
respectively, with the range between
the two being called the interquar-
tile range (IQR). Figure 5 (middle red
line) stands for the median value of the
data, and the whiskers extend to the
most extreme points within the range
of 1.5 IQR outside the lower and upper
quartile, respectively. The data above
the top whisker are those on the tail
of the distribution, larger than the 1.5
IQR plus the 75th percentile. When 𝜇 is
larger the spread of the data set appears
smaller (box is narrower), except in the
RAM-SCB model, and the median value
suggests a smaller 𝛿L∗. Across differ-
ent neural networks, 𝛿L∗ is similar. The
median values are approximately around
0.2 with the median absolute devia-
tion (MAD) within 0.11 and 0.17, and
75% (the top of the box) of the error
distribution is mostly below 0.7. These
results indicate that during relatively
quiet time the L∗ computed from the
neural network is reasonably accurate
and little discrepancy exists between
different neural networks. However, L∗

accuracy during highly disturbed time
cannot be estimated using the above
PSD-matching technique, because the
Liouville’s theorem can be violated with
sudden loss that usually occurs in storms.

6. L∗ Uncertainty Effect on PSD Profile

As the error on the L∗ calculation from the neural network is approximately 0.2 ± 0.15 regardless of the
underlying magnetic field model during relatively quiet times, the effect of such uncertainty on the radial
profile of PSD is further investigated by using the neural network from the T96 field model for the L∗ cal-
culation. We believe that the same conclusion can be drawn from using a different neural network, but
here we only use one model to demonstrate the effect. While Green and Kivelson [2004] only qualitatively
addressed the effect of L∗ uncertainty on the PSD radial profile, this work will quantitatively determine the
influence on the PSD profile from a cluster of different L∗ values at different fixed positions. Given nominal
solar wind conditions, a small perturbation is applied to both the solar wind velocity and density, resembling
the uncertainty in solar wind measurements. This allows for the generation of a different magnetosphere
configuration, resulting in a range of calculated L∗. The artificial fluctuation in the solar wind condition mim-
ics the measurement uncertainty of solar wind speed and density, which are approximately 1% and 15%,
respectively (R. Skoug and J. Steinberg, personal communication, 2013; see also http://omniweb.gsfc.nasa.
gov/html/omni2_doc.html by Joe King and Natalia Papitashvili). An ensemble of 100 small disturbances is
applied to both the nominal solar wind density and speed, generating a pseudo-normal distribution around
the nominal condition with the above uncertainty (1%, 15%) as their standard deviation, respectively. Based
on these magnetospheric configurations, L∗ is calculated from the neural network at several different loca-
tions ranging from 6.0 to 8.0 RE on the midnight Sun-Earth line. The corresponding PSD at these positions
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is converted from nominal energy differential electron flux, which is obtained from the AE-8 radiation belt
model with different energy and pitch angle for solar minimum conditions, following the conversion pro-
cedure described in Yu et al. [2014]. As an example, at location of (−6.5, 0, 0) RE L∗ and PSD both display a
pseudo-normal distribution (Figures 6a and 6b); the local magnetic field and PSD generally increase mono-
tonically with L∗ (Figures 6c and 6d). A change of 3% in the magnetic field results in a change of 3% in L∗

value and a change of 12% in the PSD at this selected location. It should be noted that the degree of change
in the PSD depends on the PSD radial gradient at the position of interest.

Figure 7 collects the PSD(L∗) results computed at different locations on the midnight equator based on the
above 100 magnetospheric configurations. At each location, a scatter of PSD(L∗) distributes around the nom-
inal result (Figure 7, red dot), representing the associated uncertainty. The uncertainties in the PSD and L∗

therefore envelope a radial span in the PSD profile, with the blue line aligning the minimum L∗ values and
the green one aligning the maximum values from each scattered cluster. Between these two extrema, the
shape of the PSD profile seems to persist, but the peak location is shifted approximately by 0.2 in L∗. This
finding is quantitatively consistent with the conclusion in Green and Kivelson [2004]. The PSD radial profile at
different 𝜇 values suggests that the PSD radial gradient is energy dependent. This feature is also preserved
even with the uncertainty in L∗. While the above ensemble of magnetosphere configurations can mostly
be considered as quiet systems and the variability in both the L∗ and PSD is not significant, a storm-time
magnetosphere would result in a larger uncertainty in L∗ and hence a stronger shift in the PSD radial pro-
file would be expected. Nevertheless, the above experiment may shed some light on the potential impact
on the interpretation of the underlying physics in the radiation belt, such as the responsible energization
mechanism for creating the localized PSD peak.

7. Summary

As a continuing effort on increasing the computational capability of efficiently, accurately obtaining L∗, this
study trains the L∗ neural network based on the first-principles magnetic field configuration from RAM-SCB
model, with simple inputs including solar wind conditions and the Dst index, which allows for a much
easier preparation of inputs than the previous L∗ networks that require the McIlwain L and the magnetic
field at the mirror point as part of the inputs. The newly trained neural network is compared against the
previously trained neural networks from empirical magnetic field models as well as the tracing method in
the IRBEM library and is found to reasonably agree with other L∗ values during moderate storm events and
quiet times. But the difference in the L∗ is substantially increased across all these neural networks during
large storms. This is probably attributed to insufficient statistics for the extreme cases to result in a reliabler
neural network.

The accuracy of L∗ neural networks with different underlying magnetic field models (both empirical and
physics based) is estimated with the PSD-matching technique using Van Allen Probes observations. The
median value of the drift shell error is approximately around 0.2 with median absolute deviation (MAD)
around 0.15 during relatively quiet time for all the neural networks. The uncertainty in the calculated L∗

value is found to affect the PSD profile by shifting it radially without changing its shape, which implies its
influence on the interpretation of radiation belt physics such as localized energization.

References
Baker, D., et al. (2013), The relativistic electron-proton telescope (REPT) instrument on board the radiation belt storm probes

(RBSP) spacecraft: Characterization of Earth’s radiation belt high-energy particle populations, Space Sci. Rev., 179, 337–381,
doi:10.1007/s11214-012-9950-9.

Chen, Y., R. H. W. Friedel, G. D. Reeves, T. G. Onsager, and M. F. Thomsen (2005), Multisatellite determination of the relativistic electron
phase space density at geosynchronous orbit: Methodology and results during geomagnetically quiet times, J. Geophys. Res., 110,
A10210, doi:10.1029/2004JA010895.

Chen, Y., R. H. W. Friedel, G. D. Reeves, T. E. Cayton, and R. Christensen (2007), Multisatellite determination of the relativistic electron
phase space density at geosynchronous orbit: An integrated investigation during geomagnetic storm times, J. Geophys. Res., 112,
A11214, doi:10.1029/2007JA012314.

Gannon, J. L., S. R. Elkington, and T. G. Onsager (2012), Uncovering the nonadiabatic response of geosynchronous electrons to
geomagnetic disturbance, J. Geophys. Res., 117, A10215, doi:10.1029/2012JA017543.

Green, J. C., and M. G. Kivelson (2004), Relativistic electrons in the outer radiation belt: Differentiating between acceleration mechanisms,
J. Geophys. Res., 109, A03213, doi:10.1029/2003JA010153.

Henderson, M. G., S. K. Morley, and B. A. Larsen (2011), LANLGeoMag, version 1.5.13, Tech. Rep. LA-CC-11-104, Los Alamos National
Laboratory, Los Alamos, N. M.

Acknowledgments
We gratefully acknowledge the sup-
port of the U.S. Department of Energy
through the Los Alamos National Lab-
oratory (LANL)/Laboratory Directed
Research and Development (LDRD)
program, as well as the support
of NASA through NNH10APOGI
and NNG13PJ05I and NSF through
IA1203460.

Masaki Fujimoto thanks the review-
ers for their assistance in evaluating
this paper.

YU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1691

http://dx.doi.org/10.1007/s11214-012-9950-9
http://dx.doi.org/10.1029/2004JA010895
http://dx.doi.org/10.1029/2007JA012314
http://dx.doi.org/10.1029/2012JA017543
http://dx.doi.org/10.1029/2003JA010153


Journal of Geophysical Research: Space Physics 10.1002/2013JA019350

Huang, C.-L., H. E. Spence, H. J. Singer, and N. A. Tsyganenko (2008), A quantitative assessment of empirical magnetic field models at
geosynchronous orbit during magnetic storms, J. Geophys. Res., 113, A04208, doi:10.1029/2007JA012623.

Jordanova, V. K., J. U. Kozyra, G. V. Khazanov, A. F. Nagy, C. E. Rasmussen, and M.-C. Fok (1994), A bounce-averaged kinetic model of the
ring current ion population, Geophys. Res. Lett., 21, 2785–2788, doi:10.1029/94GL02695.

Jordanova, V. K., Y. S. Miyoshi, S. Zaharia, M. F. Thomsen, G. D. Reeves, D. S. Evans, C. G. Mouikis, and J. F. Fennell (2006), Kinetic sim-
ulations of ring current evolution during the Geospace Environment Modeling challenge events, J. Geophys. Res., 111, A11S10,
doi:10.1029/2006JA011644.

Jordanova, V. K., S. Zaharia, and D. T. Welling (2010), Comparative study of ring current development using empirical, dipolar, and
self-consistent magnetic field simulations, J. Geophys. Res., 115, A00J11, doi:10.1029/2010JA015671.

Koller, J., and S. Zaharia (2011), LANL* V2.0: Global modeling and validation, Geosci. Model Dev., 4 (1), 669–675,
doi:10.5194/gmd-4-669-2011.

Koller, J., Y. Chen, G. D. Reeves, R. H. W. Friedel, T. E. Cayton, and J. A. Vrugt (2007), Identifying the radiation belt source region by data
assimilation, J. Geophys. Res., 112, A06244, doi:10.1029/2006JA012196.

Koller, J., G. D. Reeves, and R. H. W. Friedel (2009), LANL* V1.0: A radiation belt drift shell model suitable for real-time and reanalysis
applications, Geosci. Model Dev., 2, 113–122.

McCollough, J. P., J. L. Gannon, D. N. Baker, and M. Gehmeyr (2008), A statistical comparison of commonly used external magnetic field
models, Space Weather, 6, S10001, doi:10.1029/2008SW000391.

Min, K., J. Bortnik, and J. Lee (2013a), A novel technique for rapid L∗ calculation using UBK coordinates, J. Geophys. Res. Space Physics,
118, 192–197, doi:10.1029/2012JA018177.

Min, K., J. Bortnik, and J. Lee (2013b), A novel technique for rapid L∗ calculation: Algorithm and implementation, J. Geophys. Res. Space
Physics, 118, 1912–1921, doi:10.1002/jgra.50250.

Morley, S. K., M. G. Henderson, G. D. Reeves, R. H. W. Friedel, and D. N. Baker (2013), Phase space density matching of relativistic electrons
using the Van Allen Probes: REPT results, Geophys. Res. Lett., 40, 4798–4802, doi:10.1002/grl.50909.

Reeves, G. D., et al. (2013), Electron acceleration in the heart of the Van Allen radiation belts, Science, 341, 991–994,
doi:10.1126/science.1237743.

Roederer, J. G. (1970), Dynamics of Geomagnetically Trapped Radiation, Physics and Chemistry in Space, Springer, Berlin.
Selesnick, R. S., and J. B. Blake (1998), Radiation belt electron observations following the January 1997 magnetic cloud event, Geophys.

Res. Lett., 25(14), 2553–2556, doi:10.1029/98GL00665.
Spence, H., et al. (2013), Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and

thermal plasma (ECT) suite on NASA’s Van Allen Probes mission, Space Sci. Rev., 179(1–4), 311–336, doi:10.1007/s11214-013-0007-5.
Stern, D. P. (1975), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80, 595–599, doi:10.1029/JA080i004p00595.
Tsyganenko, N. A. (1989), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 37, 5–20,

doi:10.1016/0032-0633(89)90066-4.
Tsyganenko, N. A., and M. I. Sitnov (2005), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J.

Geophys. Res., 110, A03208, doi:10.1029/2004JA010798.
Turner, D. L., Y. Shprits, M. Hartinger, and V. Angelopoulos (2012), Explaining sudden losses of outer radiation belt electrons during

geomagnetic storms, Nat. Phys., 8, 208–212, doi:10.1038/nphys2185.
Volland, H. (1973), A semiempirical model of large-scale magnetospheric electric fields, J. Geophys. Res., 78, 171–180,

doi:10.1029/JA078i001p00171.
Weimer, D. R. (2001), An improved model of ionospheric electric potentials including substorm perturbations and application to the

Geospace Environment Modeling November 24, 1996, event, J. Geophys. Res., 106, 407–416, doi:10.1029/2000JA000604.
Yu, Y., J. Koller, S. Zaharia, and V. Jordanova (2012), L∗ neural networks from different magnetic field models and their applicability, Space

Weather, 10, S02014, doi:10.1029/2011SW000743.
Yu, Y., J. Koller, V. Jordanova, S. Zaharia, and H. Godinez (2014), Radiation belt data assimilation of a moderate storm event using the

physics-based magnetic field configuration from RAM-SCB, Ann. Geophys., doi:10.5194/angeo-2013-264-2014, in press.
Zaharia, S. (2008), Improved Euler potential method for three-dimensional magnetospheric equilibrium, J. Geophys. Res., 113, A08221,

doi:10.1029/2008JA013325.
Zaharia, S., C. Cheng, and K. Maezawa (2004), 3-D force-balanced magnetospheric configurations, Ann. Geophys., 22, 251–265,

doi:10.5194/angeo-22-251-2004.
Zaharia, S., V. K. Jordanova, M. F. Thomsen, and G. D. Reeves (2006), Self-consistent modeling of magnetic fields and plasmas in the inner

magnetosphere: Application to a geomagnetic storm, J. Geophys. Res., 111, A11S14, doi:10.1029/2006JA011619.

YU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1692

http://dx.doi.org/10.1029/2007JA012623
http://dx.doi.org/10.1029/94GL02695
http://dx.doi.org/10.1029/2006JA011644
http://dx.doi.org/10.1029/2010JA015671
http://dx.doi.org/10.5194/gmd-4-669-2011
http://dx.doi.org/10.1029/2006JA012196
http://dx.doi.org/10.1029/2008SW000391
http://dx.doi.org/10.1029/2012JA018177
http://dx.doi.org/10.1002/jgra.50250
http://dx.doi.org/10.1002/grl.50909
http://dx.doi.org/10.1126/science.1237743
http://dx.doi.org/10.1029/98GL00665
http://dx.doi.org/10.1007/s11214-013-0007-5
http://dx.doi.org/10.1029/JA080i004p00595
http://dx.doi.org/10.1016/0032-0633(89)90066-4
http://dx.doi.org/10.1029/2004JA010798
http://dx.doi.org/10.1038/nphys2185
http://dx.doi.org/10.1029/JA078i001p00171
http://dx.doi.org/10.1029/2000JA000604
http://dx.doi.org/10.1029/2011SW000743
http://dx.doi.org/10.5194/angeo-2013-264-2014
http://dx.doi.org/10.1029/2008JA013325
http://dx.doi.org/10.5194/angeo-22-251-2004
http://dx.doi.org/10.1029/2006JA011619

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	3-2014

	Application and testing of the L neural network with the self-consistent magnetic field model of RAM-SCB
	Yiqun Yu
	Josef Koller
	Vania K. Jordanova
	Sorin G. Zaharia
	R. Friedel
	See next page for additional authors
	Recommended Citation
	Authors


	Application and testing of the L* neural network with the self-consistent magnetic field model of RAM-SCB
	Abstract
	Introduction
	Physics-Based RAM-SCB Model
	Feed-Forward Neural Network Multilayer Perceptron
	Validation
	Estimating the Error of L* Calculation
	L* Uncertainty Effect on PSD Profile
	Summary
	References


