27,848 research outputs found
Synthesis of calculational methods for the design and analysis of radiation shields for nuclear rocket systems. Volume 5 - TIC-TOC-TOE, a FORTRAN program for the temperature in the coolant tank and other calculations and for the thermal neutron originating energy Final progress report
TIC-TOC-TOE computer program for radiation shielding design and analysis in nuclear rocket system
The structure of chromospheres around late-type giants and supergiants
Observations alpha Tau (K5III) and beta Gru (M2II) made at high resolution are used to confirm line identifications of features blended at low resolution. The high resolution spectra allow selected pairs of lines to be used to find the electron density and the opacity. Methods for determining these factors and the usual emission measure are presented. The electron density and opacity can be used together with the emission measure to place constraints on the structure of the atmosphere. The line formation processes are briefly discussed. Photo-excitation by strong lines appears to be important in these late type atmospheres
An astronomical search for evidence of new physics: Limits on gravity-induced birefringence from the magnetic white dwarf RE J0317-853
The coupling of the electromagnetic field directly with gravitational gauge
fields leads to new physical effects that can be tested using astronomical
data. Here we consider a particular case for closer scrutiny, a specific
nonminimal coupling of torsion to electromagnetism, which enters into a
metric-affine geometry of space-time. We show that under the assumption of this
nonminimal coupling, spacetime is birefringent in the presence of such a
gravitational field. This leads to the depolarization of light emitted from
extended astrophysical sources. We use polarimetric data of the magnetic white
dwarf to set strong constraints on the essential coupling
constant for this effect, giving k^2 \lsim (19 {m})^2 .Comment: Statements about Moffat's NGT modified. Accepted for publication in
Phys.Rev.
Dynamic Poisson Factorization
Models for recommender systems use latent factors to explain the preferences
and behaviors of users with respect to a set of items (e.g., movies, books,
academic papers). Typically, the latent factors are assumed to be static and,
given these factors, the observed preferences and behaviors of users are
assumed to be generated without order. These assumptions limit the explorative
and predictive capabilities of such models, since users' interests and item
popularity may evolve over time. To address this, we propose dPF, a dynamic
matrix factorization model based on the recent Poisson factorization model for
recommendations. dPF models the time evolving latent factors with a Kalman
filter and the actions with Poisson distributions. We derive a scalable
variational inference algorithm to infer the latent factors. Finally, we
demonstrate dPF on 10 years of user click data from arXiv.org, one of the
largest repository of scientific papers and a formidable source of information
about the behavior of scientists. Empirically we show performance improvement
over both static and, more recently proposed, dynamic recommendation models. We
also provide a thorough exploration of the inferred posteriors over the latent
variables.Comment: RecSys 201
Decreased myocardial injury and improved contractility after administration of a peptide derived against the alpha-interacting domain of the L-type calcium channel.
BackgroundMyocardial infarction remains the leading cause of morbidity and mortality associated with coronary artery disease. The L-type calcium channel (IC a-L) is critical to excitation and contraction. Activation of the channel also alters mitochondrial function. Here, we investigated whether application of a alpha-interacting domain/transactivator of transcription (AID-TAT) peptide, which immobilizes the auxiliary β2 subunit of the channel and decreases metabolic demand, could alter mitochondrial function and myocardial injury.Methods and resultsTreatment with AID-TAT peptide decreased ischemia-reperfusion injury in guinea-pig hearts ex vivo (n=11) and in rats in vivo (n=9) assessed with uptake of nitroblue tetrazolium, release of creatine kinase, and lactate dehydrogenase. Contractility (assessed with catheterization of the left ventricle) was improved after application of AID-TAT peptide in hearts ex vivo (n=6) and in vivo (n=8) up to 12 weeks before sacrifice. In search of the mechanism for the effect, we found that intracellular calcium ([Ca(2+)]i, Fura-2), superoxide production (dihydroethidium fluorescence), mitochondrial membrane potential (Ψm, JC-1 fluorescence), reduced nicotinamide adenine dinucleotide production, and flavoprotein oxidation (autofluorescence) are decreased after application of AID-TAT peptide.ConclusionsApplication of AID-TAT peptide significantly decreased infarct size and supported contractility up to 12 weeks postcoronary artery occlusion as a result of a decrease in metabolic demand during reperfusion
Parity meter for charge qubits: an efficient quantum entangler
We propose a realization of a charge parity meter based on two double quantum
dots alongside a quantum point contact. Such a device is a specific example of
the general class of mesoscopic quadratic quantum measurement detectors
previously investigated by Mao et al. [Phys. Rev. Lett. 93, 056803 (2004)]. Our
setup accomplishes entangled state preparation by a current measurement alone,
and allows the qubits to be effectively decoupled by pinching off the parity
meter. Two applications of the parity meter are discussed: the measurement of
Bell's inequality in charge qubits and the realization of a controlled NOT
gate.Comment: 8 pages, 4 figures; v2: discussion of measurement time, references
adde
Time-dependent spherically symmetric covariant Galileons
We study spherically symmetric solutions of the cubic covariant Galileon
model in curved spacetime in presence of a matter source, in the test scalar
field approximation. We show that a cosmological time evolution of the Galileon
field gives rise to an induced matter-scalar coupling, due to the
Galileon-graviton kinetic braiding, therefore the solution for the Galileon
field is non trivial even if the bare matter-scalar coupling constant is set to
zero. The local solution crucially depends on the asymptotic boundary
conditions, and in particular, Minkowski and de Sitter asymptotics correspond
to different branches of the solution. We study the stability of these
solutions, namely, the well-posedness of the Cauchy problem and the positivity
of energy for scalar and tensor perturbations, by diagonalizing the kinetic
terms of the spin-2 and spin-0 degrees of freedom. In addition, we find that in
presence of a cosmological time evolution of the Galileon field, its kinetic
mixing with the graviton leads to a friction force, resulting to efficient
damping of scalar perturbations within matter.Comment: 20 pages, no figure, RevTeX4 format; v2: minor changes reflecting the
published version in PR
Ratio data: Understanding pitfalls and knowing when to standardise
Ratios represent a single-value metric but consist of two component parts: a numerator variable and a denominator variable. Strictly speaking, a ratio is defined as: “the quantitative relation between two amounts showing the number of times one value contains or is contained by another”. When we discuss symmetry in sport science, we are generally comparing values of some metric between left and right sides or between agonist and antagonist muscles. The typical practice is to express the comparison as a ratio (differences are also a way of standardizing under different assumptions), such as the injured limb having only 60% of the strength of the uninjured limb. Conceptually though, we are using the ratio as one way to standardize the value of one variable with respect to another. Despite their common use, the interpretation of ratio standardisation, whether for symmetry or other reasons, often provides challenges, some of which are not always obvious to practitioners. Typically, when monitoring a change in ratios, if an intervention affects both the numerator and denominator, there will likely be challenges in interpreting the ratio appropriately. Therefore, the aim of this editorial is to use some examples to highlight when using this form of standardisation may be helpful, and when using it can lead to misinterpretations
- …