70 research outputs found

    Circulating Hepatitis B Surface Antigen Particles Carry Hepatocellular microRNAs

    Get PDF
    Hepatitis B virus (HBV) produces high quantities of subviral surface antigen particles (HBsAg) which circulate in the blood outnumbering virions of about 1\103–6 times. In individuals coinfected with the defective hepatitis Delta virus (HDV) the small HDV-RNA-genome and Delta antigen circulate as ribonucleoprotein complexes within HBsAg subviral particles. We addressed the question whether subviral HBsAg particles may carry in the same way cellular microRNAs (miRNAs) which are released into the bloodstream within different subcellular forms such as exosomes and microvescicles. Circulating HBsAg particles were isolated from sera of 11 HBsAg carriers by selective immunoprecipitation with monoclonal anti-HBs-IgG, total RNA was extracted and human miRNAs were screened by TaqMan real-time quantitative PCR Arrays. Thirty-nine human miRNAs were found to be significantly associated with the immunoprecipitated HBsAg, as determined by both comparative DDCT analysis and non-parametric tests (Mann-Whitney, p<0.05) with respect to controls. Moreover immunoprecipitated HBsAg particles contained Ago2 protein that could be revealed in ELISA only after 0.5% NP40. HBsAg associated miRNAs were liver-specific (most frequent = miR-27a, miR-30b, miR-122, miR-126 and miR-145) as well as immune regulatory (most frequent = miR-106b and miR-223). Computationally predicted target genes of HBsAg-associated miRNAs highlighted molecular pathways dealing with host-pathoge

    Granulomatous Reactivation during the Course of a Leprosy Infection: Reaction or Relapse

    Get PDF
    Leprosy is a serious infectious disease whose treatment still poses some challenges. Patients are usually treated with a combination of antimicrobial drugs called multidrug therapy. Although this treatment is effective against Mycobacterium leprae, the bacillus that causes leprosy, patients may develop severe inflammatory reactions during treatment. These reactions may be either attributed to an improvement in the immunological reactivity of the patient along with the treatment, or to relapse of the disease due to the proliferation of remaining bacilli. In certain patients these two conditions may be difficult to differentiate. The present study addresses the histopathology picture of and the M. leprae bacilli in sequential biopsies taken from lesions of patients who presented such reactions aiming to improve the differentiation of the two conditions. This is important because these reactions are one of the major causes of the disabilities of the patients with leprosy, and should be treated early and appropriately. Our results show that the histopathology picture alone is not sufficient, and that bacilli's counting is necessary

    RNAi in the regulation of mammalian viral infections

    Get PDF
    Although RNA interference (RNAi) is known to play an important part in defense against viruses of invertebrates, its contribution to mammalian anti-viral defense has been a matter of dispute. This is surprising because all components of the RNAi machinery necessary for robust RNAi-mediated restriction of viruses are conserved in mammals, and the introduction of synthetic small interfering RNAs (siRNAs) into cells efficiently silences the replication of viruses that contain siRNA complementary sequences in those cells. Here, I discuss the reasons for the dispute, and review the evidence that RNAi is a part of the physiological defense of mammalian cells against viral infections

    The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines

    Get PDF
    Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus linked to a number of B cell cancers and lymphoproliferative disorders. During latent infection, EBV expresses 25 viral pre-microRNAs (miRNAs) and induces the expression of specific host miRNAs, such as miR-155 and miR-21, which potentially play a role in viral oncogenesis. To date, only a limited number of EBV miRNA targets have been identified; thus, the role of EBV miRNAs in viral pathogenesis and/or lymphomagenesis is not well defined. Here, we used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) combined with deep sequencing and computational analysis to comprehensively examine the viral and cellular miRNA targetome in EBV strain B95-8-infected lymphoblastoid cell lines (LCLs). We identified 7,827 miRNA-interaction sites in 3,492 cellular 3′UTRs. 531 of these sites contained seed matches to viral miRNAs. 24 PAR-CLIP-identified miRNA:3′UTR interactions were confirmed by reporter assays. Our results reveal that EBV miRNAs predominantly target cellular transcripts during latent infection, thereby manipulating the host environment. Furthermore, targets of EBV miRNAs are involved in multiple cellular processes that are directly relevant to viral infection, including innate immunity, cell survival, and cell proliferation. Finally, we present evidence that myc-regulated host miRNAs from the miR-17/92 cluster can regulate latent viral gene expression. This comprehensive survey of the miRNA targetome in EBV-infected B cells represents a key step towards defining the functions of EBV-encoded miRNAs, and potentially, identifying novel therapeutic targets for EBV-associated malignancies

    Six RNA Viruses and Forty-One Hosts: Viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems

    Get PDF
    We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts

    Termination of the leprosy isolation policy in the US and Japan : Science, policy changes, and the garbage can model

    Get PDF
    BACKGROUND: In both the US and Japan, the patient isolation policy for leprosy /Hansen's disease (HD) was preserved along with the isolation facilities, long after it had been proven to be scientifically unnecessary. This delayed policy termination caused a deprivation of civil liberties of the involuntarily confined patients, the fostering of social stigmas attached to the disease, and an inefficient use of health resources. This article seeks to elucidate the political process which hindered timely policy changes congruent with scientific advances. METHODS: Examination of historical materials, supplemented by personal interviews. The role that science played in the process of policy making was scrutinized with particular reference to the Garbage Can model. RESULTS: From the vantage of history, science remained instrumental in all period in the sense that it was not the primary objective for which policy change was discussed or intended, nor was it the principal driving force for policy change. When the argument arose, scientific arguments were employed to justify the patient isolation policy. However, in the early post-WWII period, issues were foregrounded and agendas were set as the inadvertent result of administrative reforms. Subsequently, scientific developments were more or less ignored due to concern about adverse policy outcomes. Finally, in the 1980s and 1990s, scientific arguments were used instrumentally to argue against isolation and for the termination of residential care. CONCLUSION: Contrary to public expectations, health policy is not always rational and scientifically justified. In the process of policy making, the role of science can be limited and instrumental. Policy change may require the opening of policy windows, as a result of convergence of the problem, policy, and political streams, by effective exercise of leadership. Scientists and policymakers should be attentive enough to the political context of policies
    corecore