43 research outputs found

    Stochastic noise and synchronisation during Dictyostelium aggregation make cAMP oscillations robust

    Get PDF
    The molecular network, which underlies the oscillations in the concentration of adenosine 3′, 5′-cyclic monophosphate (cAMP) during the aggregation phase of starvation-induced development in Dictyostelium discoideum, achieves remarkable levels of robust performance in the face of environmental variations and cellular heterogeneity. However, the reasons for this robustness remain poorly understood. Tools and concepts from the field of control engineering provide powerful methods for uncovering the mechanisms underlying the robustness of these types of biological systems. Using such methods, two important factors contributing to the robustness of cAMP oscillations in Dictyostelium are revealed. First, stochastic fluctuations in the molecular interactions of the intracellular network, arising from random or directional noise and biological sources, play an important role in preserving stable oscillations in the face of variations in the kinetics of the network. Second, synchronisation of the aggregating cells through the diffusion of extracellular cAMP appears to be a key factor in ensuring robustness to cell-to-cell variations of the oscillatory waves of cAMP observed in Dictyostelium cell cultures. The conclusions have important general implications for the robustness of oscillating biomolecular networks (whether seen at organism, cell, or intracellular levels and including circadian clocks or Ca2+ oscillations, etc.), and suggest that such analysis can be conducted more reliably by using models including stochastic simulations, even in the case where molecular concentrations are very high

    Geomagnetic Field Tracker for Deorbiting a CubeSat Using Electric Thrusters

    Get PDF
    no abstrac

    Design of an embedded inverse-feedforward biomolecular trackingcontroller for enzymatic reaction processes

    Get PDF
    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a ‘subtractor’ that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering

    Drug diffusion along an intact mammalian cochlea

    Get PDF
    Intratympanic drug administration depends on the ability of drugs to pass through the round window membrane (RW) at the base of the cochlea and diffuse from this location to the apex. While the RW permeability for many different drugs can be promoted, passive diffusion along the narrowing spiral of the cochlea is limited. Earlier measurements of the distribution of marker ions, corticosteroids and antibiotics demonstrated that the concentration of substances applied to the RW was two to three orders of magnitude higher in the base compared to the apex. The measurements, however, involved perforating the cochlear bony wall and, in some cases, sampling perilymph. These manipulations can change the flow rate of perilymph and lead to intake of perilymph through the cochlear aqueduct, thereby disguising concentration gradients of the delivered substances. In this study, the suppressive effect of salicylate on cochlear amplification via block of the outer hair cell (OHC) somatic motility was utilized to assess salicylate diffusion along an intact guinea pig cochlea in vivo. Salicylate solution was applied to the RW and threshold elevation of auditory nerve responses was measured at different times and frequencies after application. Resultant concentrations of salicylate along the cochlea were calculated by fitting the experimental data using a mathematical model of the diffusion and clearing of salicylate in a tube of variable diameter combined with a model describing salicylate action on cochlear amplification. Concentrations reach a steady-state at different times for different cochlear locations and it takes longer to reach the steady-state at more apical locations. Even at the steady state, the predicted concentration at the apex negligible. Model predictions for the geometry of the longer human cochlea show even higher differences in the steady-state concentrations of the drugs between cochlear base and apex. Our findings confirm conclusions that achieving therapeutic drug concentrations throughout the entire cochlear duct is hardly possible when the drugs are applied to the RW and are distributed via passive diffusion. Assisted methods of drug delivery are needed to reach a more uniform distribution of drugs along the cochlea

    Identification and Functional Analysis of the psaD Promoter of Chlorella vulgaris Using Heterologous Model Strains

    No full text
    Chlorella has great potential as a bio-factory for production of value-added compounds. To produce the desired chemicals more efficiently in Chlorella, genetic tools for modification of Chlorella need to be developed, especially an endogenous promoter. In this study, the promoter of photosystem I protein D (psaD) from Chlorella vulgaris UTEX395 was identified. Computational analysis revealed the presence of several putative cis-acting elements, including a potential core element, and light-responsive or stress-responsive elements. Gene expression analysis in heterologous expression system in Chlamydomonasreinhardtii and Nicotianabenthamiana showed that CvpsaD promoter can be used to drive the expression of genes. Functional analysis of this promoter suggested that the initiator element (Inr) is important for its function (i.e., TATA-less promoter) and that an additional factor (e.g., downstream of the transcriptional start site) might be needed for light response. We have shown that the CvpsaD promoter is functional, but not sufficiently strong, both in microalgae and higher plant
    corecore