12 research outputs found

    The prevalence of antimicrobial-producing Gram-positive bacteria in human gut: a preliminary study

    Get PDF
    Background: Human gut microbiome is an excellent source for searching novel antimicrobials which is currently in need due to the raise of drug resistance bacteria. Many Gram-positive bacteria isolated from human gut have been reported to produce antimicrobial compounds but still only few studies investigating the prevalence of these bacteria in human gut.Methods: We took stool samples from 19 adult participants (age: 20–70 years; ethnicity: European and Asian). Stool samples obtained from 7 females and 12 males. We screened for Gram-positive antimicrobial-producing bacteria from the stool samples and identified the positive ones using 16s rRNA sequencing.Results: Here, we reported that antimicrobial-producing Gram-positive bacteria can be found in the stool samples of 6 out of 19 participants. By screening against Staphylococcus aureus USA300 and Pseudomonas aeruginosa PAO1, some isolates exhibited a different inhibition activity compared to the previously reported antimicrobial compounds.Conclusion: Our findings showed that some strains isolated from human gut exhibits a novel antimicrobial activity which implies that there could still be novel antimicrobial compounds in human gut produced by Gram-positive bacteria

    Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus

    Get PDF
    Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (RomR) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the RomR clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the RomR clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the RomR clone compared to its parental strain HG001. If farE is deleted in the RomR clone, or, if native farR is expressed in the RomR strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the RomR clone, that FarR is an important regulator, and that the point mutation in farR (RomR clone) makes the clone hyper-virulent

    Ethnomedicinal Plants in Herbal Remedies Used for Treatment of Skin Diseases by Traditional Healers in Songkhla Province, Thailand

    No full text
    Skin disorders are a worldwide health problem that normally affect human life. A traditional healer is an important expert in researching notable medicinal plants for skin disease treatment. This study aimed to determine the traditional knowledge and the use of medicinal plants for the treatment of skin diseases among traditional healers in the Songkhla province, Thailand. The ethnobotanical information was collected from experienced traditional healers by semi-structured interviews and participant observations. Plant specimens were also collected and identified using the standard taxonomic method. The data were analyzed by interpretation and descriptive statistics. Twenty-five polyherbal formulations for the treatment of skin diseases were obtained from traditional healers with at least 10 years of experience. A total of 66 plant species in 38 families were documented. Leaves and trees were the most commonly employed plant parts and plant habits included in the herbal remedies, respectively. Fabaceae, Rubiaceae, and Zingiberaceae were the majority of the cited families. Oryza sativa L. and Zingiber montanum (J. Koenig) Link ex A.Dietr. were the most preferred plants combined in the prescriptions, which had the highest use value (UV = 0.83). The highest relative frequency of citation was represented by Curcuma longa L., Eurycoma longifolia Jack, Knema globularia (Lamk.) Warb, and Senna siamea (Lam.) Irwin & Barneby. (0.55 each). This research suggests the importance of traditional healers in the healing of skin diseases with herbal remedies. A variety of medicinal plants are used in the prescriptions for the treatment of skin disorders in the Songkhla province, in the south of Thailand. Pharmacological and toxicological activities as well as phytochemical constituents of polyherbal remedies should be further investigated to scientifically verify further applications of widely practiced herbal medicines

    Activity of Gallidermin on Staphylococcus aureus and Staphylococcus epidermidis Biofilms

    No full text
    Due to their abilities to form strong biofilms, Staphylococcus aureus and Staphylococcus epidermidis are the most frequently isolated pathogens in persistent and chronic implant-associated infections. As biofilm-embedded bacteria are more resistant to antibiotics and the immune system, they are extremely difficult to treat. Therefore, biofilm-active antibiotics are a major challenge. Here we investigated the effect of the lantibiotic gallidermin on two representative biofilm-forming staphylococcal species. Gallidermin inhibits not only the growth of staphylococci in a dose-dependent manner but also efficiently prevents biofilm formation by both species. The effect on biofilm might be due to repression of biofilm-related targets, such as ica (intercellular adhesin) and atl (major autolysin). However, gallidermin's killing activity on 24-h and 5-day-old biofilms was significantly decreased. A subpopulation of 0.1 to 1.0% of cells survived, comprising “persister” cells of an unknown genetic and physiological state. Like many other antibiotics, gallidermin showed only limited activity on cells within mature biofilms
    corecore