291 research outputs found

    Elongator mutation in mice induces neurodegeneration and ataxia-like behavior

    Get PDF
    Cerebellar ataxias are severe neurodegenerative disorders with an early onset and progressive and inexorable course of the disease. Here, we report a single point mutation in the gene encoding Elongator complex subunit 6 causing Purkinje neuron degeneration and an ataxia-like phenotype in the mutant wobbly mouse. This mutation destabilizes the complex and compromises its function in translation regulation, leading to protein misfolding, proteotoxic stress, and eventual neuronal death. In addition, we show that substantial microgliosis is triggered by the NLRP3 inflammasome pathway in the cerebellum and that blocking NLRP3 function in vivo significantly delays neuronal degeneration and the onset of ataxia in mutant animals. Our data provide a mechanistic insight into the pathophysiology of a cerebellar ataxia caused by an Elongator mutation, substantiating the increasing body of evidence that alterations of this complex are broadly implicated in the onset of a number of diverse neurological disorders.The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Phenomics Facility (APF), the Australian National University. The APF is supported by the Australian Phenomics Network (APN). The APN is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) program. We are very grateful to Jelena Bezbradica Mirkovic and Kate Schroder for providing NLRP3 KO and Caspase-1 KO animals and for their valuable discussion. We also thank Avril Robertson and Matthew Cooper for the gift of MCC950 and Trent Woodruff for advice regarding the administration of MCC950. We acknowledge Ting-Yu Lin and Andrzej Chramiec-Głąbik for providing labeled tRNAs. This work was supported by the POLONEZ1 Grant UMO-2015/19/P/NZ1/02514 from the National Science Centre, Poland and received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 665778 (M.G. and A.S.-K.) and the First Team grant First TEAM/ 2016-1/2 from the Foundation for Polish Science (S.G.)

    Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set

    Get PDF
    When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than (1.65±0.02)×109 M(1.65\pm0.02) \times 10^9~{M_\odot} using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind' pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap

    Cardioceptive accuracy is associated with arousal but not with valence and perceived exertion under physical load

    Get PDF
    Under resting conditions, cardioceptive accuracy-the acuity of the perception of heartbeats-is associated with the self-reported intensity of affective states but not with reported valence. Physical exertion elicits positive affect below the anaerobic threshold and negative affect above the threshold while arousal gradually increases. The current research aimed to study the associations between cardioceptive accuracy and characteristics of the affective response (arousal and valence) during physical activity. About 67 undergraduate students completed the Schandry task and rated their perceived exertion (Borg-scale) and affective experience (arousal and valence) under three physical loads (running on a treadmill below, around, and above the anaerobic threshold). Cardioceptive accuracy was associated with the arousal component of the affective states during physical activity but not with valence and perceived exertion

    Multiple reservoirs of volatiles in the Moon revealed by the isotopic composition of chlorine in lunar basalts

    Get PDF
    The isotopes of chlorine (37Cl and 35Cl) are highly fractionated in lunar samples compared to most other Solar System materials. Recently, the chlorine isotope signatures of lunar rocks have been attributed to large-scale degassing processes that occurred during the existence of a magma ocean. In this study we investigated how well a suite of lunar basalts, most of which have not previously been analyzed, conform to previous models. The Cl isotope compositions (δ37Cl (‰) = [(37Cl/35Clsample/37Cl/35ClSMOC)-1]×1000, where SMOC refers to standard mean ocean chloride) recorded range from ∼+7 to +14 ‰ (Apollo 15), +10 to +19 ‰ (Apollo 12), +9 to +15 ‰ (70017), +4 to +8 ‰ (MIL 05035), and +15 to +22 ‰ (Kalahari 009). The Cl isotopic data from the present study support the mixing trends previously reported by Boyce et al., 2015, Barnes et al., 2016, as the Cl isotopic composition of apatites are positively correlated with bulk-rock incompatible trace element abundances in the low-Ti basalts, inclusive of low-Ti and KREEP basalts. This trend has been interpreted as evidence that incompatible trace elements, including Cl, were concentrated in the urKREEP residual liquid of the lunar magma ocean, rather than the mantle cumulates, and that urKREEP Cl had a highly fractionated isotopic composition. The source regions for the basalts were thus created by variable mixing between the mantle (Cl-poor and relatively unfractionated) and urKREEP. The high-Ti basalts show much more variability in measured Cl isotope ratios and scatter around the trend formed by the low-Ti basalts. Most of the data for lunar meteorites also fits the mixing of volatiles in their sources, but Kalahari 009, which is highly depleted in incompatible trace elements, contains apatites with heavily fractionated Cl isotopic compositions. Given that Kalahari 009 is one of the oldest lunar basalts and ought to have been derived from very early-formed mantle cumulates, a heavy Cl isotopic signature is likely not related to its mantle source, but more likely to magmatic or secondary alteration processes, perhaps via impact-driven vapor metasomatism of the lunar crust

    Examination of Apoptosis Signaling in Pancreatic Cancer by Computational Signal Transduction Analysis

    Get PDF
    BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer death. Changes in apoptosis signaling in pancreatic cancer result in chemotherapy resistance and aggressive growth and metastasizing. The aim of this study was to characterize the apoptosis pathway in pancreatic cancer computationally by evaluation of experimental data from high-throughput technologies and public data bases. Therefore, gene expression analysis of microdissected pancreatic tumor tissue was implemented in a model of the apoptosis pathway obtained by computational protein interaction prediction. METHODOLOGY/PRINCIPAL FINDINGS: Apoptosis pathway related genes were assembled from electronic databases. To assess expression of these genes we constructed a virtual subarray from a whole genome analysis from microdissected native tumor tissue. To obtain a model of the apoptosis pathway, interactions of members of the apoptosis pathway were analysed using public databases and computational prediction of protein interactions. Gene expression data were implemented in the apoptosis pathway model. 19 genes were found differentially expressed and 12 genes had an already known pathophysiological role in PDAC, such as Survivin/BIRC5, BNIP3 and TNF-R1. Furthermore we validated differential expression of IL1R2 and Livin/BIRC7 by RT-PCR and immunohistochemistry. Implementation of the gene expression data in the apoptosis pathway map suggested two higher level defects of the pathway at the level of cell death receptors and within the intrinsic signaling cascade consistent with references on apoptosis in PDAC. Protein interaction prediction further showed possible new interactions between the single pathway members, which demonstrate the complexity of the apoptosis pathway. CONCLUSIONS/SIGNIFICANCE: Our data shows that by computational evaluation of public accessible data an acceptable virtual image of the apoptosis pathway might be given. By this approach we could identify two higher level defects of the apoptosis pathway in PDAC. We could further for the first time identify IL1R2 as possible candidate gene in PDAC

    Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris)

    Get PDF
    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (−212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5′ and 3′ UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3′ and 5′ UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene–behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system
    corecore