303 research outputs found

    Dinitro­sylbis[tris­(4-chloro­phen­yl)phosphane]iron

    Get PDF
    The title dinitrosyl iron diphosphane complex, [Fe(NO)2(C18H12Cl3P)2] or Fe(NO)2 L 2 [L = P(C6H4-p-Cl)3] belongs to the family of metal dinitrosyl compounds with the general formula Fe(NO)2(L)x, referred to collectively as dinitrosyl iron compounds (DNICs). The iron atom is tetra­hedrally coordinated by two phosphane ligands and two NO groups with Fe—N—O bond angles of 178.76 (15) and 177.67 (14)°

    Dinitro­sylbis[tris­(4-methyl­phen­yl)phosphane]iron

    Get PDF
    The title compound, [Fe(NO)2(C21H21P)2], belongs to the family of metal dinitrosyl compounds with the general formula Fe(NO)2(L)x, referred to collectively as ‘dinitrosyl iron compounds’ (DNICs). Herein we report the structure of a dinitrosyl iron diphosphane complex, [Fe(NO)2 L 2], with L = P(C6H4-p-CH3)3. There are two crystallographically independent but chemically equal mol­ecules per asymmetric unit. The iron atom in each mol­ecule is tetra­hedrally coordinated by two phosphane ligands and two NO groups, with Fe—N—O angles in the range 173.84 (15)–179.31 (16)°

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing.

    Get PDF
    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼ 100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.We thank the DKFZ Genomics and Proteomics Core Facility and the OICR Genome Technologies Platform for provision of sequencing services. Financial support was provided by the consortium projects READNA under grant agreement FP7 Health-F4-2008-201418, ESGI under grant agreement 262055, GEUVADIS under grant agreement 261123 of the European Commission Framework Programme 7, ICGC-CLL through the Spanish Ministry of Science and Innovation (MICINN), the Instituto de Salud Carlos III (ISCIII) and the Generalitat de Catalunya. Additional financial support was provided by the PedBrain Tumor Project contributing to the International Cancer Genome Consortium, funded by German Cancer Aid (109252) and by the German Federal Ministry of Education and Research (BMBF, grants #01KU1201A, MedSys #0315416C and NGFNplus #01GS0883; the Ontario Institute for Cancer Research to PCB and JDM through funding provided by the Government of Ontario, Ministry of Research and Innovation; Genome Canada; the Canada Foundation for Innovation and Prostate Cancer Canada with funding from the Movember Foundation (PCB). PCB was also supported by a Terry Fox Research Institute New Investigator Award, a CIHR New Investigator Award and a Genome Canada Large-Scale Applied Project Contract. The Synergie Lyon Cancer platform has received support from the French National Institute of Cancer (INCa) and from the ABS4NGS ANR project (ANR-11-BINF-0001-06). The ICGC RIKEN study was supported partially by RIKEN President’s Fund 2011, and the supercomputing resource for the RIKEN study was provided by the Human Genome Center, University of Tokyo. MDE, LB, AGL and CLA were supported by Cancer Research UK, the University of Cambridge and Hutchison-Whampoa Limited. SD is supported by the Torres Quevedo subprogram (MI CINN) under grant agreement PTQ-12-05391. EH is supported by the Research Council of Norway under grant agreements 221580 and 218241 and by the Norwegian Cancer Society under grant agreement 71220-PR-2006-0433. Very special thanks go to Jennifer Jennings for administrating the activity of the ICGC Verification Working Group and Anna Borrell for administrative support.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1000

    A community-based lifestyle and weight loss intervention promoting a Mediterranean-style diet pattern evaluated in the stroke belt of North Carolina: the Heart Healthy Lenoir Project

    Get PDF
    Abstract Background Because residents of the southeastern United States experience disproportionally high rates of cardiovascular disease (CVD), it is important to develop effective lifestyle interventions for this population. Methods The primary objective was to develop and evaluate a dietary, physical activity (PA) and weight loss intervention for residents of the southeastern US. The intervention, given in eastern North Carolina, was evaluated in a 2 year prospective cohort study with an embedded randomized controlled trial (RCT) of a weight loss maintenance intervention. The intervention included: Phase I (months 1–6), individually-tailored intervention promoting a Mediterranean-style dietary pattern and increased walking; Phase II (months 7–12), option of a 16-week weight loss intervention for those with BMI ≥ 25 kg/m2 offered in 2 formats (16 weekly group sessions or 5 group sessions and 10 phone calls) or a lifestyle maintenance intervention; and Phase III (months 13–24), weight loss maintenance RCT for those losing ≥ 8 lb with all other participants receiving a lifestyle maintenance intervention. Change in diet and PA behaviors, CVD risk factors, and weight were assessed at 6, 12, and 24 month follow-up. Results Baseline characteristics (N = 339) were: 260 (77 %) females, 219 (65 %) African Americans, mean age 56 years, and mean body mass index 36 kg/m2. In Phase I, among 251 (74 %) that returned for 6 month follow-up, there were substantial improvements in diet score (4.3 units [95 % CI 3.7 to 5.0]), walking (64 min/week [19 to 109]), and systolic blood pressure (−6.4 mmHg [−8.7 to −4.1]) that were generally maintained through 24 month follow-up. In Phase II, 138 (57 group only, 81 group/phone) chose the weight loss intervention and at 12 months, weight change was: −3.1 kg (−4.9 to −1.3) for group (N = 50) and −2.1 kg (−3.2 to −1.0) for group/phone combination (N = 75). In Phase III, 27 participants took part in the RCT. At 24 months, weight loss was −2.1 kg (−4.3 to 0.0) for group (N = 51) and −1.1 kg (−2.7 to 0.4) for combination (N = 72). Outcomes for African American and whites were similar. Conclusions The intervention yielded substantial improvement in diet, PA, and blood pressure, but weight loss was modest. Trial registration clinicaltrials.gov Identifier: NCT0143348

    HIV-1 Populations in Semen Arise through Multiple Mechanisms

    Get PDF
    HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus
    corecore