332 research outputs found

    Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats

    Get PDF
    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores

    Body Temperatures and Activity Patterns of Tasmanian Devils (Sarcophilus harrisii) and Eastern Quolls (Dasyurus viverrinus) through a Subalpine Winter

    Get PDF
    During a field study of carnivorous dasyurid marsupials in subalpine Tasmania, the trapping success for Tasmanian devils (Sarcophilus harrisii), but not for spotted-tailed quolls (Dasyurus maculatus) or eastern quolls (Dasyurus viverrinus), was significantly lower when winter weather conditions turned to sleet or snow or when deep snow lay on the ground. This field study was instigated to determine if devils and eastern quolls spend more time in burrows in severe weather conditions and if they enter torpor. Torpor is known to occur in eutherian mammals as large as devils and in a similar-sized congeneric marsupial, the western quoll (Dasyurus geoffroyi). Using radiotelemetry, body temperatures of Tasmanian devils and eastern quolls ranging freely in their natural habitat were monitored throughout winter. Neither species was observed in torpor, even under prolonged severe weather conditions, and the number of hours spent active did not differ between summer and winter or between moderate and severe winter weather conditions. Body temperatures averaged 36.5 degrees C (SD = 0.079, range of 33.5 degrees -38.6 degrees C) for the three male eastern quolls and 35.7 degrees C (SD = 0.575, range of 31.3 degrees - 37.5 degrees C) for the four (male and female) devils. A diel cycle in body temperature occurred in both species; temperatures rose each evening when animals became active, remained high throughout the night despite ambient temperatures falling to the diel minima, and were lower during the day when the individuals were inactive in dens. The amplitude of this cycle was greater in eastern quolls (1.1 degrees C, SD = 0.142) than in devils (0.6 degrees C, SD = 0.252)

    Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The Tasmanian devil (Sarcophilus harrisii) is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD). DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. RESULTS: Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the northwestern devil population and lowest in southeastern areas. CONCLUSIONS: The third sequenced marsupial MHC provides insights into the evolution of this dynamic genomic region among the diverse marsupial species. The two sequenced devil MHC haplotypes revealed three copy number variations that are likely to significantly affect immune response and suggest that future work should focus on the role of copy number variations in disease susceptibility in this species

    Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC

    No full text
    BACKGROUND The Tasmanian devil (Sarcophilus harrisii) is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD). DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. RESULTS Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the northwestern devil population and lowest in southeastern areas. CONCLUSIONS The third sequenced marsupial MHC provides insights into the evolution of this dynamic genomic region among the diverse marsupial species. The two sequenced devil MHC haplotypes revealed three copy number variations that are likely to significantly affect immune response and suggest that future work should focus on the role of copy number variations in disease susceptibility in this species.This work was funded by an ARC Future Fellowship to KB (FT0992212), the Eric Guiler fund and the Tasmanian Department of Primary Industries, Parks, Water and the Environment. YC was supported by an Endeavour International Postgraduate Research Scholarship, KM by an Australian Postgraduate Award and an ARC Linkage Grant

    The ecology and evolution of wildlife cancers: Applications for management and conservation

    Full text link
    Evolutionary Applications published by John Wiley & Sons Ltd Ecological and evolutionary concepts have been widely adopted to understand host–pathogen dynamics, and more recently, integrated into wildlife disease management. Cancer is a ubiquitous disease that affects most metazoan species; however, the role of oncogenic phenomena in eco-evolutionary processes and its implications for wildlife management and conservation remains undeveloped. Despite the pervasive nature of cancer across taxa, our ability to detect its occurrence, progression and prevalence in wildlife populations is constrained due to logistic and diagnostic limitations, which suggests that most cancers in the wild are unreported and understudied. Nevertheless, an increasing number of virus-associated and directly transmissible cancers in terrestrial and aquatic environments have been detected. Furthermore, anthropogenic activities and sudden environmental changes are increasingly associated with cancer incidence in wildlife. This highlights the need to upscale surveillance efforts, collection of critical data and developing novel approaches for studying the emergence and evolution of cancers in the wild. Here, we discuss the relevance of malignant cells as important agents of selection and offer a holistic framework to understand the interplay of ecological, epidemiological and evolutionary dynamics of cancer in wildlife. We use a directly transmissible cancer (devil facial tumour disease) as a model system to reveal the potential evolutionary dynamics and broader ecological effects of cancer epidemics in wildlife. We provide further examples of tumour–host interactions and trade-offs that may lead to changes in life histories, and epidemiological and population dynamics. Within this framework, we explore immunological strategies at the individual level as well as transgenerational adaptations at the population level. Then, we highlight the need to integrate multiple disciplines to undertake comparative cancer research at the human–domestic–wildlife interface and their environments. Finally, we suggest strategies for screening cancer incidence in wildlife and discuss how to integrate ecological and evolutionary concepts in the management of current and future cancer epizootics

    Darwin, the devil, and the management of transmissible cancers

    Get PDF
    Modern conservation science frequently relies on genetic tools to manage imperiled populations threatened by processes such as habitat fragmentation and infectious diseases. Translocation of individuals to restore genetic diversity (genetic rescue) is increasingly used to manage vulnerable populations, but it can swamp local adaptations and lead to outbreeding depression. Thus, genetic management is context dependent and needs evaluation across multiple generations . Genomic studies can help evaluate the extent to which populations are locally adapted to assess the costs and benefits of translocations. Predicting the long‐term fitness effects of genetic interventions and their evolutionary consequences is a vital step in managing dwindling populations threatened by emerging infectious diseases

    Señalamientos acerca de la propuesta de trabajo en Taller – Dibujo IV, 2020. La potencia del registro.

    Get PDF
    Con este material producto de una dinámica colectiva de escritura, se introduce a les estudiantes en la práctica del dispositivo que se plantea como condición para el cursado de la asignatura: la bitácora.Escuela de Bellas Artes - Facultad de Humanidades y Artes - UN
    corecore