15 research outputs found

    Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis

    No full text
    The benzothiazinone BTZ043 is a tuberculosis drug candidate with nanomolar whole-cell activity. BTZ043 targets the DprE1 catalytic component of the essential enzyme decaprenylphosphoryl-β-D-ribofuranose-2′-epimerase, thus blocking biosynthesis of arabinans, vital components of mycobacterial cell walls. Crystal structures of DprE1, in its native form and in a complex with BTZ043, reveal formation of a semimercaptal adduct between the drug and an active-site cysteine, as well as contacts to a neighboring catalytic lysine residue. Kinetic studies confirm that BTZ043 is a mechanism-based, covalent inhibitor. This explains the exquisite potency of BTZ043, which, when fluorescently labeled, localizes DprE1 at the poles of growing bacteria. Menaquinone can reoxidize the flavin adenine dinucleotide cofactor in DprE1 and may be the natural electron acceptor for this reaction in the mycobacterium. Our structural and kinetic analysis provides both insight into a critical epimerization reaction and a platform for structure-based design of improved inhibitors

    Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism

    Get PDF
    Aerolysin is the founding member of a superfamily of β-pore–forming toxins whose pore structure is unknown. We have combined X-ray crystallography, cryo-EM, molecular dynamics and computational modeling to determine the structures of aerolysin mutants in their monomeric and heptameric forms, trapped at various stages of the pore formation process. A dynamic modeling approach based on swarm intelligence was applied, whereby the intrinsic flexibility of aerolysin extracted from new X-ray structures was used to fully exploit the cryo-EM spatial restraints. Using this integrated strategy, we obtained a radically new arrangement of the prepore conformation and a near-atomistic structure of the aerolysin pore, which is fully consistent with all of the biochemical data available so far. Upon transition from the prepore to pore, the aerolysin heptamer shows a unique concerted swirling movement, accompanied by a vertical collapse of the complex, ultimately leading to the insertion of a transmembrane β-barrel
    corecore