942 research outputs found

    The Dual Origin Of The Nitrogen Deficiency In Comets: Selective Volatile Trapping In The Nebula And Postaccretion Radiogenic Heating

    Get PDF
    We propose a scenario that explains the apparent nitrogen deficiency in comets in away that is consistent with the fact that the surfaces of Pluto and Triton are dominated by nitrogen-rich ice. We use a statistical thermodynamic model to investigate the composition of the successive multiple guest clathrates that may have formed during the cooling of the primordial nebula from the most abundant volatiles present in the gas phase. These clathrates agglomerated with the other ices (pure condensates or stoichiometric hydrates) and formed the building blocks of comets. We report that molecular nitrogen is a poor clathrate former, when we consider a plausible gas-phase composition of the primordial nebula. This implies that its trapping into cometesimals requires a low disk temperature (similar to 20 K) in order to allow the formation of its pure condensate. We find that it is possible to explain the lack of molecular nitrogen in comets as a consequence of their postformation internal heating engendered by the decay of short-lived radiogenic nuclides. This scenario is found to be consistent with the presence of nitrogen-rich ice covers on Pluto and Triton. Our model predicts that comets should present xenon-to-water and krypton-to-water ratios close to solar xenon-to-oxygen and krypton-to-oxygen ratios, respectively. In contrast, the argon-to-water ratio is predicted to be depleted by a factor of similar to 300 in comets compared to solar argon-to-oxygen, as a consequence of poor trapping efficiency and radiogenic heating.CNESJPLAstronom

    Insecure attachment is associated with the α-EEG anomaly during sleep

    Get PDF
    Abstract Background The α-EEG anomaly during sleep, originally associated with chronic pain, is noted in several psychiatric and medical conditions and is also present in some normal subjects. The exact significance of the α-EEG anomaly is uncertain, but it has been suggested to be a nonspecific response to a variety of noxious stimuli. We propose that attachment insecurity, which is often associated with a state of hypervigilance during wakefulness, may be associated with the α-EEG anomaly during sleep. Methods Thirty one consecutive patients referred to a Sleep Disorders Clinic for clinical assessment of sleep complaints underwent standard polysomnographic recording. The degree of alpha activity in polysomnographs was scored visually according to standard criteria. Attachment insecurity was measured with the Experience in Close Relationships – Revised questionnaire. Results Attachment anxiety was significantly associated with the proportion of sleep in which α waves were present (df = 1, F = 5.01, p = 0.03). The relationship between the α-EEG anomaly and attachment anxiety was not explained by the distribution of sleep and mood diagnoses, medications, anxiety symptoms or depression symptoms. Conclusion Interpersonal style in close relationships may be related to sleep physiology. Further research to determine the nature of the relationship between attachment, sleep and other factors that are related to each of these, such as a history of personal adversity, is warranted

    Dysfunctional stem and progenitor cells impair fracture healing with age

    Get PDF
    Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly

    Ocular Point-of-Care Ultrasonography to Diagnose Posterior Chamber Abnormalities: A Systematic Review and Meta-analysis

    Get PDF
    Importance: Diagnosing posterior chamber ocular abnormalities typically requires specialist assessment. Point-of-care ultrasonography (POCUS) performed by nonspecialists, if accurate, could negate the need for urgent ophthalmologist evaluation. Objective: This meta-analysis sought to define the diagnostic test characteristics of emergency practitioner-performed ocular POCUS to diagnose multiple posterior chamber abnormalities in adults. Data sources: PubMed (OVID), MEDLINE, EMBASE, Cochrane, CINAHL, and SCOPUS were searched from inception through June 2019 without restrictions. Conference abstracts and trial registries were also searched. Bibliographies of included studies and relevant reviews were manually searched, and experts in the field were queried. Study selection: Included studies compared ocular POCUS performed by emergency practitioners with a reference standard of ophthalmologist evaluation. Pediatric studies were excluded. All 116 studies identified during abstract screening as potentially relevant underwent full-text review by multiple authors, and 9 studies were included. Data extraction and synthesis: In accordance with PRISMA guidelines, multiple authors extracted data from included studies. Results were meta-analyzed for each diagnosis using a bivariate random-effects model. Data analysis was performed in July 2019. Main outcomes and measures: The outcomes of interest were diagnostic test characteristics of ocular POCUS for the following diagnoses: retinal detachment, vitreous hemorrhage, vitreous detachment, intraocular foreign body, globe rupture, and lens dislocation. Results: Nine studies (1189 eyes) were included. All studies evaluated retinal detachment, but up to 5 studies assessed each of the other diagnoses of interest. For retinal detachment, sensitivity was 0.94 (95% CI, 0.88-0.97) and specificity was 0.94 (95% CI, 0.85-0.98). Sensitivity and specificity were 0.90 (95% CI, 0.65-0.98) and 0.92 (95% CI, 0.75-0.98), respectively, for vitreous hemorrhage and were 0.67 (95% CI, 0.51-0.81) and 0.89 (95% CI, 0.53-0.98), respectively, for vitreous detachment. Sensitivity and specificity were high for lens dislocation (0.97 [95% CI, 0.83-0.99] and 0.99 [95% CI, 0.97-1.00]), intraocular foreign body (1.00 [95% CI, 0.81-1.00] and 0.99 [95% CI, 0.99-1.00]), and globe rupture (1.00 [95% CI, 0.63-1.00] and 0.99 [95% CI, 0.99-1.00]). Results were generally unchanged in sensitivity analyses of studies with low risk of bias. Conclusions and relevance: This study suggests that emergency practitioner-performed ocular POCUS is an accurate test to assess for retinal detachment in adults. Its utility in diagnosing other posterior chamber abnormalities is promising but needs further study

    Evaluation of Microbolometer-Based Thermography for Gossamer Space Structures

    Get PDF
    In August 2003, NASA's In-Space Propulsion Program contracted with our team to develop a prototype on-board Optical Diagnostics System (ODS) for solar sail flight tests. The ODS is intended to monitor sail deployment as well as structural and thermal behavior, and to validate computational models for use in designing future solar sail missions. This paper focuses on the thermography aspects of the ODS. A thermal model was developed to predict local sail temperature variations as a function of sail tilt to the sun, billow depth, and spectral optical properties of front and back sail surfaces. Temperature variations as small as 0.5 C can induce significant thermal strains that compare in magnitude to mechanical strains. These thermally induced strains may result in changes in shape and dynamics. The model also gave insight into the range and sensitivity required for in-flight thermal measurements and supported the development of an ABAQUS-coupled thermo-structural model. The paper also discusses three kinds of tests conducted to 1) determine the optical properties of candidate materials; 2) evaluate uncooled microbolometer-type infrared imagers; and 3) operate a prototype imager with the ODS baseline configuration. (Uncooled bolometers are less sensitive than cooled ones, but may be necessary because of restrictive ODS mass and power limits.) The team measured the spectral properties of several coated polymer samples at various angles of incidence. Two commercially available uncooled microbolometer imagers were compared, and it was found that reliable temperature measurements are feasible for both coated and uncoated sides of typical sail membrane materials

    A primordial origin for the atmospheric methane of Saturn's moon Titan

    Full text link
    The origin of Titan's atmospheric methane is a key issue for understanding the origin of the Saturnian satellite system. It has been proposed that serpentinization reactions in Titan's interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan's planetesimals before its formation. Here, we point out that serpentinization reactions in Titan's interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan's water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan's interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite's planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan's interior can be up to 1,300 times the current mass of atmospheric methane.Comment: Accepted for publication in Icaru
    • 

    corecore