1,796 research outputs found

    Graph Separation and Search Number

    Get PDF
    We relate two concepts in graph theory and algorithmic complexity, namely the search number and the vertex separation of a graph. Lengauer has previously related vertex separation to progressive black/white pebble demand. Let a (G) denote the search number and vs(G) denote the vertex separation of a connected, undirected graph G. We show that vs(G) \u3c s(G) \u3c vs(G) +2 and we give a simple transformation from G to G^1 such that vs(G^1) = s(G). We give algorithm that, for any tree T, compute vs(T) in linear time and compute an optimal layout with respect to vertex separation in time O(n log n). We characterize those trees having a given vertex separation and describe the smallest such trees. We give an algorithm which, for all fixed k\u3e1, decides the problem: Is vs(G

    A Theorist’s Appreciation of Immanuel Wallerstein’s Analysis of Inter-Societal Dynamics

    Get PDF

    On the action of the anti-absence drug ethosuximide in the rat and cat thalamus

    Get PDF
    The action of ethosuximide (ETX) on Na+, K+, and Ca2+ currents and on tonic and burst-firing patterns was investigated in rat and cat thalamic neurons in vitro by using patch and sharp microelectrode recordings. In thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (LGN), ETX (0.75-1 mM) decreased the noninactivating Na+ current, INaP, by 60% but had no effect on the transient Na+ current. In TC neurons of the rat and cat LGN, the whole-cell transient outward current was not affected by ETX (up to 1 mM), but the sustained outward current was decreased by 39% at 20 mV in the presence of ETX (0.25-0.5 mM): this reduction was not observed in a low Ca2+ (0.5 mM) and high Mg2+ (8 mM) medium or in the presence of Ni2+ (1 mM) and Cd2+ (100 ”m). In addition, ETX (up to 1 mM) had no effect on the low-threshold Ca2+ current, I T, of TC neurons of the rat ventrobasal (VB) thalamus and LGN and in neurons of the rat nucleus reticularis thalami nor on the high-threshold Ca2+ current in TC neurons of the rat LGN. Sharp microelectrode recordings in TC neurons of the rat and cat LGN and VB showed that ETX did not change the resting membrane potential but increased the apparent input resistance at potentials greater than -60 mV, resulting in an increase in tonic firing. In contrast, ETX decreased the number of action potentials in the burst evoked by a low-threshold Ca2+ potential. The frequency of the remaining action potentials in a burst also was decreased, whereas the latency of the first action potential was increased. Similar effects were observed on the burst firing evoked during intrinsic ÎŽ oscillations. These results indicate an action of ETX on / NaP and on the Ca2+-activated K+ current, which explains the decrease in burst firing and the increase in tonic firing, and, together with the lack of action on low- and high-threshold Ca2+ currents, the results cast doubts on the hypothesis that a reduction of / τ in thalamic neurons underlies the therapeutic action of this anti-absence medicine

    A Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants — liquid and gaseous petroleum compounds plus chemical dispersants — poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional “in-place, in-kind” restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, we provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants—liquid and gaseous petroleum compounds plus chemical dispersants—poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional "in-place, in-kind" restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, the authors provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    Characterizing Mode Anharmonicity and Huang–Rhys Factors Using Models of Femtosecond Coherence Spectra

    Get PDF
    Femtosecond laser pulses readily produce coherent quantum beats in transient–absorption spectra. These oscillatory signals often arise from molecular vibrations and therefore may contain information about the excited-state potential energy surface near the Franck–Condon region. Here, by fitting the measured spectra of two laser dyes to microscopic models of femtosecond coherence spectra (FCS) arising from molecular vibrations, we classify coherent quantum-beat signals as fundamentals or overtones and quantify their Huang–Rhys factors and anharmonicity values. We discuss the extracted Huang–Rhys factors in the context of quantum-chemical computations. This work solidifies the use of FCS for analysis of coherent quantum beats arising from molecular vibrations, which will aid studies of molecular aggregates and photosynthetic proteins

    “It's my language, my culture and it's personal!” Migrant mothers' experience of language use and identity change in their relationship with their children: an interpretative phenomenological analysis

    Get PDF
    The question of how migrants’ language use impacts their ethnic identity has received considerable attention in the literature. There is, however, little understanding of how this relationship manifests or is negotiated in interethnic families. This paper presents an in-depth exploration of Spanish mothers’ experiences of Spanish- and English-language interactions with their English-born children. Semi-structured interviews were conducted with Spanish mothers living in Britain in interethnic partnerships and transcripts were subjected to interpretative phenomenological analysis. Analysis reveals a process of identity change where participants’ shifting ethnic identifications with host and heritage culture is intimately related to their language use with their children. Pivotal to this process is the participants’ need to maintain their ‘Spanish mother’ identity, a desire that can only be fulfilled by transferring their heritage language to their children and speaking it with them. Findings reveal how this dynamic impacts perception of family roles, relationship quality and psychological well-being

    Symmetry Breaking Charge Transfer in DNA-Templated Perylene Dimer Aggregates

    Get PDF
    Molecular aggregates are of interest to a broad range of fields including light harvesting, organic optoelectronics, and nanoscale computing. In molecular aggregates, nonradiative decay pathways may emerge that were not present in the constituent molecules. Such nonradiative decay pathways may include singlet fission, excimer relaxation, and symmetry-breaking charge transfer. Singlet fission, sometimes referred to as excitation multiplication, is of great interest to the fields of energy conversion and quantum information. For example, endothermic singlet fission, which avoids energy loss, has been observed in covalently bound, linear perylene trimers and tetramers. In this work, the electronic structure and excited-state dynamics of dimers of a perylene derivative templated using DNA were investigated. Specifically, DNA Holliday junctions were used to template the aggregation of two perylene molecules covalently linked to a modified uracil nucleobase through an ethynyl group. The perylenes were templated in the form of monomer, transverse dimer, and adjacent dimer configurations. The electronic structure of the perylene monomers and dimers were characterized via steady-state absorption and fluorescence spectroscopy. Initial insights into their excited-state dynamics were gleaned from relative fluorescence intensity measurements, which indicated that a new nonradiative decay pathway emerges in the dimers. Femtosecond visible transient absorption spectroscopy was subsequently used to elucidate the excited-state dynamics. A new excited-state absorption feature grows in on the tens of picosecond timescale in the dimers, which is attributed to the formation of perylene anions and cations resulting from symmetry-breaking charge transfer. Given the close proximity required for symmetry-breaking charge transfer, the results shed promising light on the prospect of singlet fission in DNA-templated molecular aggregates

    Probing DNA Structural Heterogeneity by Identifying Conformational Subensembles of a Bicovalently Bound Cyanine Dye

    Get PDF
    DNA is a re-configurable, biological information-storage unit, and much remains to be learned about its heterogeneous structural dynamics. For example, while it is known that molecular dyes templated onto DNA exhibit increased photostability, the mechanism by which the structural dynamics of DNA affect the dye photophysics remains unknown. Here, we use femtosecond, two-dimensional electronic spectroscopy measurements of a cyanine dye, Cy5, to probe local conformations in samples of single-stranded DNA (ssDNA–Cy5), double-stranded DNA (dsDNA–Cy5), and Holliday junction DNA (HJ–DNA–Cy5). A line shape analysis of the 2D spectra reveals a strong excitation–emission correlation present in only the dsDNA–Cy5 complex, which is a signature of inhomogeneous broadening. Molecular dynamics simulations support the conclusion that this inhomogeneous broadening arises from a nearly degenerate conformer found only in the dsDNA–Cy5 complex. These insights will support future studies on DNA’s structural heterogeneity
    • 

    corecore