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Abstract

We relate two concepts in graph theory and algorithmic complexity, namely the searck number and
the vertex scparation of a graph. Lengauer has previously related vertex separation to progressive
black/white pebble demand. Let s(G) denote the search number and vs (G ) denote the vertex separa-
tion of a connected, undirected graph G. We show that vs (G) < s(GQ) < vs(G) + 2 and we give a
simple transformation from G to G’ such that vs (G') = s(G).

We give algorithms that, for any tree T', compute vs (T') in linear time and compute an optimal
layout with respect to vertex separation in time O (n log n ). We characterize those trees having a given
vertex separation and describe the smallest such trees.

We give an algorithm which, for all fixed & > 1, decides the problem: “Is vs (G) < k7" in polyno-
mial time. Because of the relationships mentioned, this algorithm implies that the search number and
progressive black/white pebble demand problems are also decidable in polynomial time, for fixed k. All

three problems are known to be NP-complete in general.



1. Introduction

We consider connected, undirected graphs. They may have multiple edges or loops, which can affect

the search number, but not the vertex separation or pebble demand.

A separator of an undirected graph is a set of vertices, in the case of a vertex separator, or a set of
edges, in the case of an edge separator, whose removal separates the graph into two disconnected sets of
vertices. Small separators that divide the graph into roughly equal components were used to describe
good VLSI layouts in [LEIS80] and to describe good divide and conquer algorithms in [LIPTS0.
Theorems which guarantee the existence of small separators for planar graphs and graphs of fixed genus

have been described by Lipton and Tarjan [LIPT79] and by Philipp and Prauss [PHIL80].

Lengauer {LENG81] called this a static definition of separator and went on to define a “vertex
separator game”. We consider the same concept as Lengauer but describe it in terms of linear layouts.
Let G = (V,E) be a connected, undirected graph. A linear layout, or simply a layout, of G is a one to
one mapping L:V — {1,2,..., | V| }. A pertial layout of G is a one to one mapping L from a subset
V' of V to the set of integers {1,2,..., | V' |}. For a partial layout L, let V,({)={z | = € V and
there exists y € V such that {z,y} € E and L(z) < ¢ and either L(y) > ¢ or L(y) is undefined}.
The wvertex separation of G  with respect to L, denoted by ws;(G), is defined by
v, (G)=max{ | V,(7)| | 1 €1 < |domain(L)|} and the vertex separation of G is decfined by

vs{G) = min { v5,(G) | L is a layout of all of G }. These concepts are illustrated in Figure 1.1.

Insert Figure 1.1 here

Given a partial layout L, whose domain is some subset V' of all the vertices, and a positive integer
¢ < | V'], the partial layout L, is the mapping that agrees with L on the vertices {L'(1), L7(2), ...,
L-Y(i)} and is undefined elsewhere. An edge ¢ = {z,y} is dangling in a partial layout L, if z is in the
domain of L and y is not. A veriex z is acftve in a partial layout L il it is incident to a dangling edge
and in domain{L ). The set of active vertices is denoted Ay . The active vertices and dangling cdges of a

partial layout are illustrated in Figure 1.2.



Insert Figure 1.2 here

The concept of search number was introduced by Parsons [PARS76] [PARS78]. Informally, the
search number of a graph G, denoted by s (G ), is the minimum number of searchers necessary to guaran-

tee the capture of a fugitive who can move with arbitrary speed about the edges of the graph.

A search step is one of the following operations: (a) the placing of a searcher on a vertex, (b) the
movement of a searcher along an edge, (¢c) the removal of a searcher from a vertex. A search sequence is
2 sequence of search steps. Initially, all the edges of the graph are conteminated. We say that an edge
¢ = {z,y } becomes clear if either there is a searcher on z and a second searcher is moved from z to y
or there is a searcher on z, all edges incident to z except ¢ are clear, and the searcher on r is moved
along ¢ to y. A clear edge ¢ could become contaminated again by the movement or deletion of a
searcher which results in a path without searchers from a contaminated edge to ¢ . A search strategy for a
graph is a search sequence that results in all edges being simultaneously clear. The search number of a

graph is the minimum number of searchers for which a search strategy exists.

LaPaugh [LAPA83| proved that recontamination can not help. That is, for every graph, there is a
search strategy which does not recontaminate any edge and which uses the minimum number of searchers.
A. search strategy that does not recontaminate any edge will be called a progressive search strategy. The
search number problem is then clearly in NP since it is easy to see a non-deterministic, polynomial time

solution to the progressive search problem.

Meggido et al. [MEGI81] show that determining the search number of a graph is NP-hard, which
implies it is INP-complete because of LaPaugh’s result. They also show that the search number of a tree
can be determined in O (n ) steps and that determining if a graph has search number 2 or search number
3 can be done in O (n) steps. It is known that, for any graph G with maximum vertex degree 3, s (G ) is
identical to the cutwidth of G [MAKES3). Hence the search number problem has practical value, as well
as theoretical interest, since finding the cutwidth of a graph is important in some VLSI layout applications

[LEISS0].



The progressive black/white pebble game, which does not allow repebbling, is played on directed

graphs according to the following rules:

(1)  All vertices start free of pebbles.

(2) Al vertices end free of pebbles.

(3) Each vertex receives and loses a pebble exactly once.
(4) A white pebble can be placed on a vertex at any time.

(5) A black pebble can be placed on a vertex only if all the predecessors of the vertex are currently peb-

bled.

(8) A white pebble can be removed from a vertex only if all the predecessors of the vertex are currently

pebbled.
(7) A black pebble can be removed from a vertex at any time.

A pebbling strategy is a legitimate sequence of moves that starts from and finishes with the empty graph
and pebbles each node. The progressive black/white pebble demand of the graph is the minimum over all
strategies of the maximum number of pebbles on the graph during the game. The black/white pebble
game models the space requirements of non-deterministic, straight line programs. Lengauer [LENGS})
showed that the vertex separation and progressive black/white pebble problems are polynomially reduci-

ble one to the other.

In Section 2 we show the relations between vertex separation and search number. In Section 3 we
give a recursive definition of the vertex separation of a tree in terms the vertex separations of its subtrees,
a linear time algorithm for computing the vertex separation of trees, and a O(n log n ) algorithm for
computing an optimal layout. We also characterize trees of a particular vertex separation and describe
the smallest such trees. In the last section we describe an algorithm which, for fixed &, decides the vertex
separation problem in polynomial time. Because of the relations between vertex separation and progres-
sive black/white pebble demand and between vertex separation and scarch number, it follows that these

problems are also decidable in polynomial time, for fixed k.



2. Relationships Between Vertex Separation and Search Number
In this section we show that the search number of 2 graph is in the range vs (G) through vs (G') + 2. We

then show a simple transformation from G to G'' such that s {G) = vs (G).

2.1. Relating Vertex Separation to Search Number
Theorem 2.1 Let ¢ = (V,E) be a graph. Then vs(G) < s(G) < vs (G )+ 2.

Proof From Lemmas 2.1 and 2.3 below. M

Lemma 2.1 vs(G) < 5(@).
Proof We show how a layout, L, can be constructed from a search strategy, S, so that the vertex
separation of L is no greater than the number of searchers used by 5. The argument requires that the

strategy be progressive, and so relies on LaPaugh’s result that there exist optimal, progressive strategies.

At any point in the execution of a strategy, let V; be the set of vertices that are unoccupied by a
searcher and incident to no contaminated edge. Let Vg be the set of vertices currently occupied by one
or more searcher, and let Vz be the set of vertices remaining, i.e. those that are unoccupied and incident
to some contaminated edge. We note that there can be no edge connecting a node in V; to a node in
Vg, else the node in V, would, by definition of contamination, be incident to a contaminated edge.

Hence, at all points in the strategy, the set Vg separates the V; from Vp.

We want to consider strategies in which vertices pass only from Vi to Vs and from there to V.
We note that no vertex can pass from Vi to V, without passing through Vg, because an unoccupied ver-
tex incident to a contaminated edge must receive a searcher if the edge is to be cleared. Since the stra-
tegy is progressive, no vertex will ever pass back from V; to Vi because this would imply recontamina-

tion.

We now show that there exist optimal strategies in which no vertex ever passes back from V, to
Vs, i.e. no searcher is ever placed on an unoccupied node incident to no contaminated edges, and no ver-
tex passes back from Vs to Vg, i.e. no searcher is removed from a vertex, leaving it unoccupied, unless
all incident edges are clear. We call a strategy which has these properties srredundant. Optimal, irredun-

dant strategies exist because we can remove redundant moves from an optimal progressive strategy



without destroying its effectiveness, as we now show.

Firstly consider the history of a searcher who at some point arrives at a vacant vertex, none of
whose incident edges are contaminated, causing the vertex to move from V; to V5. We can remove from
the sequence of moves taken by this searcher any subsequence involving movement along a clear edge or
placement on the empty vertex without affecting the remainder of the sequence. Of course removal and

placement moves may have to be added at the beginning and end of the excised subsequence.

Secondly consider the case in which vertex z is vacated by a searcher and consequently moves from
Vs to Vg. There are two possibilities, either z was incident to 2 clear edge before the searcher was
moved or not. If x was adjacent to a clear edge, this edge would become contaminated, so the strategy
was not progressive, as assumed. If # was adjacent only to contaminated edges, we can remove from the

strategy the move which placed a searcher on z, without aflecting the effectiveness of the strategy.

We define a layout based on any progressive, irredundant strategy as follows. For each vertex we
consider the first step at which the strategy adds a searcher to that vertex. For all vertices z and y, if =
and y are first occupied at steps ¢ and j of S, then the constructed layout is such that L (z) < L(y)iff

t < j, i.e. the order of the vertices defined by L is exactly the order in which vertices enter V.

Let L; be a partial layout with respect to L. L7i) is the {** vertex to enter V5. Let V| be the
uncontaminated set and V§ the occupied set at the end of this move. It then follows from the observa-
tions above that domain{L;) = V;jU V. Finally we note that no vertex in V, is active because there
are no edges connecting vertices in V; to a vertex in V. Hence, at all steps in the strategy, A, © V§,
and so the vertex separation of the constructed layout is no greater than the number of searchers used by

the strategy. IR

Lemma 2.2 5(G) < vs(G) + 2.
Proof We show how a search strategy can be derived from a layout so that no more than two searchers
over and above the vertex separation of the layout are used. The search strategy is the procedure defined

below.



procedure search1(G, L);
fori:=1to |V | do
begin
z = L)
place 2 searcher on = ;
for each left neighbor y of z do
begin
add a searcher to y;
move a searcher from y to z;
remove a searcher from z
end;
Remove searchers on vertices that are not active in L;
end;
It can be shown, by induction on ¢, that at entry to the ¢ iteration of the outer for loop, the following

two conditions are satisfied:
(1) all edges connecting vertices in the domain of the partial layout L;_, have been cleared, and

(2} there is exactly one searcher on each active vertex of the partial layout L;_, and no searcher on any

other vertex.

From this, it follows that the procedure clears all of the edges of G and that when the outer loop is
entered the number of searchers on the graph is no more than vs (G ). Finally, note that no more than

two extra searchers are added to the graph during the execution of the outer for loop. B

The bound in Theorem 2.1 is the best possible. The bipartite graph K33 shown in Figure 1.1 has
vertex separation three and search number five. The easiest way to demonstrate that the search number
is five uses the fact that search number is identical to cutwidth for graphs with maximum vertex degree
three [MAKES3]|, since it is easily seen that K35 has cutwidth five. In Section 3.3 we give an example of

a tree, Figure 3.6, which also shows a difference of two between vertex separation and search number,



Kirousis and Papadimitriou {KIRO83] have recently extended Theorem 2.1 by comparing vertex
separation with the number of searchers needed in a variation of the searching game, which they call
“node searching”. In the node searching version, an edge {z,y } is considered to be become clear if z and
y are simultanecusly occupied by searchers. They show that, for all graphs G, the node search number

of G is identical to the vertex separation of & plus 1.

2.2. A Simple Transformation

Let the 2-expansion of a graph G be the graph formed by replacing each edge {z,y} of G by two
new vertices, say ¢ and b, and edges {z,a }, {e,b} and {b,y}.
Theorem 2.2 For any graph G, s(G ) is identical to the vertex separation of the 2-expansion of G .
Proof Let G' be the 2-expansion of G . By Theorem 2.1, vs{G') < s(G''). Clearly, subdividing edges

does not change the search number, so (G’ ) = s(G'). Hence vs (G') < 5(G).

To show that s(G) < vs (G') we show how to construct a search strategy from a layout of a 2-
expanded graph, such that the number of searchers used is no greater than the vertex separation of the
layout. We distinguish the vertices in G' which are also in G' from the vertices that have been added to

create the 2-expansion. We call the former original vertices and the latter added vertices,

Let z and y be any pair of original vertices that were adjacent in G. Without loss of generality,
suppose L (z) < L(y) in some layout L for G'. Let the added vertices for the edge {z,y} be @ and b,
where ¢ is adjacent to z and b to y. If the edge is a loop, then £ and y are the same vertex. We will
call L a standard layout if, for all edges {z, ¥ }, and added vertices a and b, L(a) = L(b)-1 and, if z
and y are distinet, L(a) > L(z). Lemma 2.3 below shows that there exist standard layouts with

optimal vertex separation. We construct a searching algorithm based on a standard layout [ .



procedure search2 (G, L)
fori:=1to |V | do
begin
z = L7Y();
if = is an original vertex
then
if z has a neighbor placed to its left
(1) then move a searcher from each of z ’s left neighbors to z;
(2) else place a searcher on z
else {z is an added vertex, with two neighbors. One is an
added vertex, say y . The other is an original vertex, say z }
begin
Case 1: {both y and z are to the left of z }
(3) move a searcher from y to z and then from z to z;
Case 2: {exactly one of y or z is to the left of z }
if there is no edge connecting this left
neighbor of z to a node to the right of z
(4) then move the searcher on this node to
(5) else add a new searcher to the left neighbor and move it to z;
Case 3: {both y and z are to the right of z }
(6) place a searcher on z
end;
Remove searchers on verlices that are not active in L; and
remove duplicate searchers on vertices that are active in L;

end;
It can be shown by induction on 1, that at entry to the " iteration of the for loop the following

conditions are satisfied:
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(1) all edges connecting vertices in the domain of the partial layout L;_; are clear, and

(2) there is exactly one searcher on each active vertex of the partial layout L;_; and no searcher on any

other vertex.

The argument must show that, during the ¢ iteration, all edges connecting vertices in domain(L; ;) to
L-}i) are cleared without recontamination occurring. We first note that all possible cases are covered.
The case in which z is an added vertex and its two neighbors both lie to the right of z, case 3, implies we

have a loop, else this arrangement would not be standard.

It is easy to see in each case that all new edges are cleared but the prevention of recontamination
needs justification. The movement of searchers in line (1) does not allow recontamination, because neigh-
bors of an original node are added nodes of degree 2. Since the layout is standard, these added nodes are
adjacent to vertices which must be to the left of z. By the induction hypothesis, the edges connecting

these added nodes to nodes to the left of z have already been cleared.

In line (3), moving a searcher from an added vertex to the left of z to z does not allow recontami-
nation, since the added vertex is connected to another vertex to the left of z , because the layout is stan-

dard. By the induction hypothesis, all edges connecting nodes to the left of x have been cleared.

In line (4), since the neighbor to the left of z is not connected by an edge to any vertices to the
right of z, all edges incident to this neighbor, except the one connecting it to z, have been cleared. So

the searcher can be moved from this left neighbor to z without allowing recontamination.

The movement in line (5) does not allow recontamination, since a new searcher is added to the lelt

neighbor before the move.

By the induction hypothesis, at entry to the #** iteration of the loop, there is exactly one searcher

on all and only the active vertices of L; ;. Consequently, there are never more vs (G } searchers on G at
entry to the loop. Since the movements described in lines (1), (3), and (4) do not introduce new searchers,
it is clear that there are at most vs (G ) searchers on G during these steps. Only in lines (2), (5) and (6)
is a2 new searcher added. Let line (2}, (5) or (6) be executed in the ™ iteration of the loop. In all cases,
the vertex z is an active vertex in the partial layout L;, since at least one neighbor lies to its right. In

addition, all vertices that were active in L;., are still active in L;, because in line (2) we have that z has
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no left neighbors, in line (5) that the left neighbor of 2 is connected to a vertex to the right of z and in
line (6) that z is an added node with both neighbors on its right. So the number of active vertices in L; is
one more than in L; ;. Consequently, the number of searchers used in all steps of the algorithm is not
larger than the number of active vertices in any partial layout, i.e. not larger than vs (G'). M

Lemma 2.3 Let G’ be obtained from a graph by 2-expansion. If there is a layout for G’ with vertex
separation k then there is a standard layout for G' with vertex separation < k.

Proof Figure 2.1 (a) shows all possible positions of a and b with respect to distinct vertices z and y in
which b precedes a. Figure 2.1 (b) shows all possible positions of a with respect to distinct vertices z
and y in which a precedes b. We assume that other vertices could be positioned anywhere. Of the ten
possible arrangements, #8 and #10 can be made standard by moving a right until it meets b, without
increasing vertex separation. It is easy to see that the other arrangements can be transformed into either
#8 or #10 by repositioning ¢ or 6 , without increasing vertex separation:

#1 can be transformed to #7 by moving & to a position between z and y,

#2 can be transformed to #8 by moving & to a position between ¢ and vy,

#3 can be transformed to #8 by moving & to a position between a and y,

#£4 can be transformed to #3 by moving a to a position between & and y,

#5 can be transformed to #10 by moving & to a position immediately following a,

#6 can be transformed to #7 by moving b to a position between z and y,

##7 can be transformed to #8 by moving a to a position between z and b,

#9 can be transformed to #8 by moving b to a position between @ and y. H

We note that Theorem 2.2 together with Lengauer’s transformation from vertex scparation to pro-
gressive black/white pebble demand gives an explicit transformation from search number to progressive

black /white pebble demand.



12

3. The Vertex Separation of Trees

Properties of trees can often be computed recursively and in polynomial time by computing the pro-
perty for subtrees and combining the results, Meggido et al. [MEGISI] give such an algorithm for com-
puting the search number of a tree and Chung et al. [CHUN82] give such an algorithm for computing the
cutwidth of trees of fixed vertex degree, d, in time O(n log® n). Yannakakis [YANNSS5] gives an
O (n log n) cutwidth algorithm for arbitrary trees that can be extended to compute the black/white peb-
ble demand of trees. Transformations from the vertex separation problem to the search number problem,
or to the pebble or cutwidth problems, that preserve treeness are not known, so a polynomial time algo-
rithm for computing the vertex separation of a tree does not follow from the algorithms of Megiddo et al.

and Yannakakis,

given vertex separation. We note also, in Section 3.3, that there exists a tree T for which

§{(T) = vs (T) + 2, so the difference can be as large as for the graph seen in the previous section.

Because the search number of a graph is equal to the vertex separation of its 2-expansion, one can
use the vertex separation algorithm to compute the search number of a tree. The number of edges in a
tree is O(n ), where n is the number of vertices, so the transformation takes linear time and the entire
process is still linear, Megiddo et al. [MEGISI] give an O (n log n ) algorithm for tree search number and

indicate that it can be improved to linear time.

3.1. A Recursive Characterization of Trees with Vertex Separation k

We present a recursive characterization of trees with vertex scparation k which is analogous to the
characterizations of scarch number and cutwidth of trees found respectively in [PARS76] and [CHUNS2].
These latter characterizations underlie the tree algorithms in [MEGIS81] and [CHUNS2|. Let the subtrees
tnduced by a vertex z be those subtrees in the forest, resulting from the deletion of z from the tree. Fig-

ure 3.1 shows a tree, a vertex = and the subtrees induced by the vertex z .
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Insert Figure 3.1 Here

lowing rules:
(1) Irz Precedes y in § thep Lir) < Ly).

(2) Iz is not a member of § thep let T/ be the induced subtree of which z js 5 member, let 4 pe

integer to g Y in T consistent with 4 layout of vertex separation < k-1, such that
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L{v) < (¥) <L(v) and such that the layout of T' does not overlap the layout of any other

subtree induced by u,

members of ¥, having at most one neighbor in Vi, ie. the ends of the Path formed by the members of
Vi. There is only one vertex jf Vil = 1. Let 2, and Zp 41 be the neighbors of 7, and z, respectively
that are not members of V, byt are part of a subtree of vertex separation k induced by %1 0r 7, respec-

tively. Since Zo and z, ,, are not in V, they induce no more than one subtree with vertey Separation k
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induced by z, then these paths are disjoint, else not. Now remove from the layout the vertex z, all edges
incident to z, and the one or two subtrees containing the vertices ¢ and §. What remains are all the
subtrees induced by z, except those that contained ¢ and &. Note that, because of the removal of the
paths from a and b to z, for every remaining vertex y, some vertex that was to the left of ¥ and con-
nected to a vertex to the right of y has been removed. Thus for all remaining subtrees T' induced by z,
vs{T'}) < k-1. No more than two subtrees were removed and these had vertex separation < k. Note

that the same argument applies even if the vertex z is a or & . The argument is illustrated by Figure 3.3.

Insert Figure 3.3 Here

Corollary 3.1 wvs(T) > k iff there exists a vertex which induces > 3 subtrees T' such that
vs(T') > k.

For example, the subtree indicated in Figure 3.4 has vertex separation 2 because its degree 3 vertex
induces 3 subtrees with vertex separation 1. The trees shown in Figures 3.4 and 3.5 have vertex separa-
tion 3 because the indicated vertex z induces three subtrees, each isomorphic to the subtree with vertex

separation 2.

Insert Figure 3.4 Here

Insert Figure 3.5 here

3.2. Smallest Trees with a Given Vertex Separation

Let the set of smallest trees, i.e. the trees with the least number of vertices, with vertex separation
k be called T (k). There is just one tree in T (1), namely the tree with a single vertex, and onc in T'(2),
namely the subtree in Figure 3.4. There are many in T(3). Two of them are shown in Figures 3.4 and
3.5. We can deduce immediately from Theorem 3.1 that to construct a tree with vertex separation k41
we can take any three members from 7'(k) and link any one vertex from each of these to a new vertex.

Furthermore, from Corollary 3.1, any tree with vertex separation k +1 must have a vertex which induces
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three subtrees with vertex separation k. So the constructed trees are among the smallest in their class.

Let m (k) denote the number of vertices in a smallest tree with vertex separation k. By the rules
for the construction of T'(k) we obtain the recurrence relation m (k) = 3m (k-1)+1 and m(1)=2. It
follows that m (k) = |5.3* /6] for all ¥ > 1. Hence, for example, since m (5) = 202, no tree has vertex
separation 5 unless it has at least 202 vertices. It also follows that for any tree T, vs (T) = Oflog n),

where n is the number of vertices in the tree.

3.3. The Difference between Vertex Separation and Search Number for Trees

The operation of replacing an edge {z,y} by a new vertex z and two edges {z,z} and {z,y} is
called edge subdivision. A graph G' is a homeomorphic image of 2 graph G if G' can be obtained from
G by a finite number of edge subdivisions. Let T be a tree and let S$(7T ) denote the set of trees obtained
from T by any single edge subdivision operation. If F is a family of trees, then let ${F ) denote the fam-
ily of trees | J{S(T) | TE€F}. Foralli > 1, let F(i) be the family of trees defined by:

F(1) = T(1), where T (k) is defined in Section 3.2,
F(i+1) = the set of all trees that are formed by taking three trees in (i) U S{F (7))
and a new vertex z and joining z by an edge to an arbitrary vertex in each tree.
The following theorem can be proved without difficulty by induction on k, by applying Theorem 3.1 and
Corollary 3.1.
Theorem 3.2
For all & > I, a tree has vertex separation 2> & il and only if it contains a subtree that is a

homeomorphic image of a tree in F (k).

We have already seen that the vertex separation and the search number of a graph may differ by
two. The tree shown in Figure 3.6 has vertex separation 3 and cutwidih 5. This tree is a smalilest tree
with cutwidth 5. It is constructed by uniting three trees of cutwidth 4 by sharing a vertex as shown in
[CHUNS2|. That it has vertex separation 3 can be seen by applying Theorem 3.2. Let the central vertex
be the root. Note that the black vertices each induce two subtrees of vertex separations 1 and 2. Conse-
quently the vertex separation of the subtrees rooted at the black vertices is 2 and that of the entire tree is

3.
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In {MAKESS] it is shown that for all graphs with maximum vertex degree 3, cutwidth and search
number are identical. Hence the example of Figure 3.8 shows that the vertex separation and search

number of trees can differ by two.

Insert Figure 3.6 Here

3.4. Computing the Vertex Separation of a Tree
We now describe a linear time algorithm for computing the vertex separation of arbitrary trees. We
first define some concepts, then we describe the algorithm and justify both its correctness and the claim of

linear time complexity.

3.4.1. k-Criticality and Vertex Labelling
In the following we shall consider directed trees for convenience. The vertex separation of a directed
tree is identical to the vertex separation of the underlying undirected tree. Let T{z] denote the subtree

of the directed tree T with the root vertex z.

Definition 3.1

A vertex z is k-critical in 2 directed tree T iff vs(T[z]) = & and there are two children y and z of z

such that vs (T{y]) = vs(T{z]) = k.

Let Tz, v, va) oee v; ] be the tree with root 2 from which the subtrees with roots v, through v; have
been removed. Let T be 2 directed tree with root %. It follows directly from Theorem 3.1 that if

vs (T) =k and there is 2 k-critical vertex z in T then vs (T[e,z]) < k-1

Definition 3.2

The assignment to a vertex z in a directed tree T, of 3 label consisting of a vector of integers

(a1, B2 oo 4z ) from {-1,0, 1, 2, ...} means that:

(1) vs(T[z])=as and
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(2) for all ¢, 1 <1 < d, there exists an a;-critical vertex % such that v; € Tz, vy, vy, vy %3] and

vs(T [z, v, v, ... » %) = a;,, and
{3)  there is no a4-critical vertex in Tz, vy, vs, cores Y],

For example, the label (2,0) on vertex 2 means that T[x| has vertex separation 2, that there is a 2-
critical vertex, Say ¥y, in T[z] and that T[x,2,] has vertex separation 0, i.e. it js a single vertex. The
label (2,-1) on a vertex ¢ means that the vertex separation of Tz)is 2 and that z js a 2-critical vertex
so that T[x,x] is empty. This labelling technique is analogous to the techniques used in [YANNSs),

[CHIUNS2| angd [MEGIS81] on trees to compute search number and cutwideh,

3.4.2. The Vertex Separation Algorithm

procedure compute_vs(T); {Computes the vertex separation of a tree T}
Choose some vertex ¥ in T and make the root of T;
Invoke compute_label (u );

vs (T) := max(label of u );

procedure compute_|abel (#); {Computes the label of the vertex u in the tree T [u ],
if u is the only vertex in the tree T [u]
then give u the label “(0)”
else begin
Compute the labels of all vertices ¥, children of » by invoking compute_label (4, ).

Invoke add_labels, which computes the label for 4 by combining the labels of all v,

represented by the string 110100. Most significant bits are on the left. Note that zero and -1 are possible
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binary strings by working from right to left and applying the rules defined in Table 3.1 together with the
actions defined in Table 3.2.

The process uses a carry bit and a string of sum bits, sum, through sum_;, where d is the largest number
in the set of labels being combined. The result, i.e. the label of the root, is given by concatenating the
carry bit with the string of sum bits. An example of the computation of the label of the root of a tree is

given in Figure 3.7.
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procedure add_labels;
{Computes a new label for the vertex « by combining the labels of its children}
carry :=0; sumy through sum., := 0;
J =0; {7 is used to avoid repeatedly setting the same bits to 0}
{Let “column ¢ ” be the vector of bits ¢ » one from each label}
if there is one or more 1 in column 0 then cerry =1 else sumg := 1;
for 1 :=1 to d do Combine column § according to the rules defined in Tables 3.1 and 3.2 below;

label of ¥ := carry bit concatenated with the string sum, through sum,_,;

# of ones in column i carry = 0 carry =1
3 of any kind T
2, both critical Action 1 Action 1
1 critical, 1 not eritical
2, both not critical Action 2 Action 2
1, critical Action 3 Action 1
1, not critical Action 4 Action 4
0 nothing Action 4

Table 3.1. Label Union Rules

Action 1 carry := 1
sum; thru sum; = 0
J =741

Action 2 carry ;=0

sum;_; thru sum; := 0
sum; =1

sum =1

joi—=i

Action 3 sum; =1

Action 4 sum;_; thru sumy := 0

carry =0
sum; =1
7 =1

Table 3.2. The Label Union Actions
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3.4.3. Correctness of the Algorithm

Suppose there are m Jabels with maximum value d, so that we can view the set of labels as rows in
an m by d+2 matrix of bits. Each 1 in column ¢ of the matrix, except for column -1, indicates the
existence of a distinct subtree with vertex separation 1. The bit in column -1 is used as a criticality indi-
cator when the root vertex is eritical. Let T be the tree formed by combining m subtrees with a new
root, r. Let T; denote the subtree of T from which have been removed all those subtrees indicated by
all the ones in columns ¢ through d. The combination process can then be seen as adding in subtrees

with progressively larger vertex separations.

We can proceed by induction on i We assert that for 1 < 1, after the addition of column ¢ -1
has been completed, the label formed by concatenating the carry bit with sum;_, through sem_; is the

label for the root of T;.

The procedure starts at column 0. A label including a zero value indicates that, after all subtrees
rooted at critical vertices have been removed, a single vertex remains. Consequently, if any subtree has a
zero in its label, T, has vertex separation 1, and there is no 1-critical vertex. If no subtree has a zero in
its label then T, is a single vertex, with vertex separation 0. In both cases the initial step of the algo-

rithm is correct.

We show that the assertion remains true as we progress from column ¢ — 1 to ¢ by examining each
of the proposed rules and actions.
Action 1: The action is appropriate since, in all cases invoking this action, there exists a vertex, call it
the significant vertex, with at least three subtrees T', such that vs (T')=1d. Thus ve(T;) =1+ 1
Note also that there is no (f + 1} critical vertex. Let the significant vertex be s. In each of the four occa
sions which stimulate Action 1, we justify the assertion:
If there are > 3 subtrees T' with vs (T') = i, then s is the root of T;.
If there are two subtrees T' with vs (T') =1, and each T' has a critical vertex, then s could be either
of the critical vertices.
If one of the two subtrees has a critical vertex and the other not, then ¢ is the critical vertex.

Il there is one subtree with a critical vertex, and vs (T;_y) = i then the carry bit is one and again s is the
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critical vertex.

Action 2: The root r induces two subtrees T such that vs (T'}) =¢, thus vs (T;) =¢ but r is at this
point an ¢ -critical vertex. When T (r) is removed, the graph is empty, so the label of T} is (¢, -1). This
argument holds whether or not vs (T;_;) = 1, i.e. whether or not the carry bit is one.

Action 3: vs (T;) = ¢ and there is an 1 -critical vertex, say z. If T'[z] is removed from T;, the resulting
tree is described by sum;_; thru sum _, previously computed.

Action 4: vs (T;) = 1 and there is no 1 -critical vertex in T;, whether or not vs (T;;) = 1.

Figure 3.7 shows an example of the labels produced by the labelling algorithm on a particular tree and for

a particular choice of root.

Insert Figure 3.7 Here

3.4.4. Time Complexity of the Algorithm

We can refine the algorithm just given by representing the labels succinctly, and show that the com-
putation can be done in linear time. We will represent a label by a bit string, as previously described,
and represent the bit string more compactly so that each maximal homogeneous substring is represented
by an integer, defining the length of the substring, e.g. the string “11100100011"” would be represented by
“3 213 2. Note that the first number must refer to a sequence of ones, so there is no ambiguity. Each
label would be a linked list of numbers, and a set of labels would be a linked list of these. The order of

the elements within a label is of course significant, but not the order within a set of labels.

Consider again the label combination process which, given a set of subtree labels, computes the label
of the tree obtained by combining the subtrees, The process proceeds from least significant bit Lo most
significant, possibly examining all bits in all labels. Notice though that once we reach a column beyond
which only one label still has entries, the result can easily be determined without the need to examine

every bit remaining in this last label.
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Consider for example the two labels:
column 987 6543210-1 Representation
11110101000 411111323
1111110 61

Once we reach column 5, the final result can be computed in constant time no matter how many bits the

first label has to the left of column 5.

To achieve this the new label is created by destroying the old labels. A new label is created, bit by
bit, up to the point, as in column 5 in the example, at which all label lists but one are empty. The new

label is then concatenated on the right of whatever remains of the longest label.

Consequently, it is easy to see that the proposed data structure can be used so that the work done in
the label addition process is proportional to the number of labels times the length of the second longest
label. We also note that the length of a label is bounded by the logarithm of the size of the subtree
rooted at the node in question, and that the length of the second longest label is no longer than the loga-

rithm of the size of the second largest subtree.

For any vertex ¢ in T = (V,E) define

ko{v) = max {{ | there are children v,w of ¥ with vs (T |v]) = vs (T |w]) > ¢}

or 1 if v has less than two children. Similarly, let

ny(u) = max {i | there are children v,w of v with (| T[v]|) = (| T[w]|)>1}

or 1 if © has less than two children.

We can deduce from the observations just made that the time complexity of the modified algorithm is

u )k () ) —O[Ekz(u ) =O(Elogn2(u))

[¢€V sEV xEV

If ¢ is any non-negative integer, the number of vertices u with 2 < ny{u) < 2'*'is no more than n /2°.

Consequently,

Elogng(u)<2n2— in

s&V I>l

So the time complexity of the modified algorithm is O (n ).
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3.5. Computing an Optimal Layout

Once labels have been computed for all vertices, an optimal layout can be computed. The layout
procedure assumes, for the sake of convenience, that the tree is directed towards a root r. We use the
same root as used in the labelling procedure, so the vertex separation of the tree is the largest number in
the label of this root. The procedure is invoked initially on the root. It will assign a unique integer, pos,

1 < pos < | V|, to each vertex. This number is the position of the vertex in an optimal layout.

The efficacy of the procedure follows immediately from the proof of Theorem 3.1. The procedure
finds the sequence S described in this proof, recursively computes the layout of each subtree induced by
members of S and places them to the right of this member of 5. As in the proof, there are two possibili-
ties, either there are critical vertices or not, and this is indicated by the label on the root. If there are
critical vertices and r is not critical, a path is found from r to the nearest critical vertex. Pos must be

given the initial value 1. Label (z) means the label of z and L is the layout function.

procedure layout (z); {z is the root of a directed tree}
k = mazx (label(z)); ¢ ==z,
if T [c] has a critical vertex
then while ¢ is not a k-critical vertex do
begin delete ¥ from label(c ); ¢ := the child of ¢ with k in its label end;
{Let (vy, va, - * - v,) be the sequence S containing all vertices z in T [c | such that label(z) contains k)
for { ;= 1to s do
begin L (V;) :== pos; pos := pos + 1; delete v; from T;
for all children y of v; do layout(y );
if (v; = ¢ and 2 % ¢ ) then layout(z )
end;
The last if statement lays out the subtree of T [z ,c ), since vertex ¢ has been deleted. We observe
that T [z ,c ] is a subtree induced by vertex ¢ with vertex separation less than k. llence, by Theorem 3.1,
it should be laid out after ¢ but before the next vertex in $. The time complexity of the procedure is

O (n log n ) since no vertex is visited more than & times and k is O (log n ).
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Also, notice that the original algorithm must be used to compute the vertex labels, because labels
are required for every vertex and since the second algorithm computes labels in a destructive fashion, it
does not produce a complete set. It is an open question, whether or not there exists a linear time layout
algorithm. Note that such an algorithm could not represent the labels explicitly for each vertex since this
requires {}(n log n ) space in the worst-case. It seems likely however that a variation on our scheme using

an implicit representation for the labels can be developed, leading to a linear time layout algorithm.
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4. Recognizing Graphs with Fixed Vertex Separation Values

In [SAXES0], [GURA84] and [MAKES3| dynamic programming algorithms have been described
which recognize graphs with fixed bandwidth or with fixed cutwidth in polynomial time. One might try
the same approach for recognizing graphs with fixed values of vertex separation. However, applying the
earlier methods to vertex separation does not produce a polynomial time algorithm. The reason is that,
whereas graphs with bandwidth or cutwidth ¥ have maximum vertex degree 2k, no vertex degree con-
straint follows from the fact that a graph has small vertex separation. For example, for all n > 1, the
star graph, i.e. the tree with a single internal vertex and n leaves, has vertex separation 1. So, if one
defines an equivalence relation on partial layouts with vertex separation < k by stipulating that layouts
L and M are equivalent if and only if they have the same set of active vertices and the same set of dan-
gling edges, as was done in the algorithms cited, the number of equivalence classes is not necessarily
bounded by a polynomial in the number of vertices. We begin by describing an equivalence relation

whose index is polynomial in the size of G .

4.1. Definitions

Let L be a partial layout of G and let Ay be the set of active vertices of L, as defined in Section
1. Let the tnactive vertices be those in domain(L ) - Ay . Let the active vertices at position j be the

set of active vertices of L;, 1.e. the truncation of L to its first j vertices, as defined in Section 1.

(1) Forall v in Ay let back(L , u ) be the set of active vertices at position L~!(u ) - 1, i.e. the position

just to the left of u .

(2) Let F; be a function from the active vertices of L to the positive integers such that Fy (u) is the

smallest number of active vertices at any position in the range L~(u ) through |domain(L )[.

(3) Let best(L, u) be the smallest integer j, L (x) < j < | domain(L } |, such that the number of

active vertices at position j is Fy (u).

An example illustrating these definitions is given in Figure 4.1.

Insert Figure 4.1 here
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Let EL be the vector of vertices in Ay, say (a,, @z --- ,dn), such that ¢{<j implies
L{a;) < L(a;). Let BL be the corresponding vector (back(L , e}, back(L , ag), - - - , back(L, a,)).

Removing the vertices in Ay , and all the edges incident to these vertices, from G results in a graph
which we denote by G(Ap). Consider a connected component C of G(A;). We will call C a
j—component of G(AL), or simply a j—component when G and L are understood, if j is the smallest
integer (1 < 7 < m) such that ¢ is a connected component of the graph obtained by deleting
Gy, Gg, ° a »@¢; from G. Thatis, C' is a j-component if a; is adjacent to some vertex in C', but no
a; , for k > 7, is adjacent to a vertex in C.

Note that no component can contain vertices ¥ and v such that ¢ is in domain{L ) and v is not. If
so, v would be an active vertex, but these have, by definition, been deleted. Hence, if C is a j-

component of G (Ay ), one of the following must be true:
(1} No vertex in C is in domain(L ), in which case we call C an unassigned component,

{(2) All vertices of C' are in domain(L) and lie to the right of a;, in which case we call ¢ a

forward j—component,

(3) All vertices of C' are in domain(L ) and at least one vertex of C lies to the left of a;, in which case

we call C a back component .

Note that, if C is a back j-component, at least one vertex of C' must be in back(L, a;). Hence, if,
for two partial layouts L and L', B, = By, then an unassigned component of L can not be a back

component of L',

The function F; describes the ability of a partial layout to absorb unassigned components as for-
ward components at intervals between consecutive vertices, without the vertex separation increasing
beyond some bound. F(q;)is the minimum number of active vertices at a position to the right of ¢;. A
position, such as best(L , a;), at which there are F; (a;) active vertices, is an optimal position for absorb-

ing components.

Let R (L) be the partial layout of G obtained from L by removing all vertices in forward com-

ponents from domain(L ) and leaving all remaining vertices in the same order as they occur in L. Note
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that the vertices removed from domain{L ) in forming R(L) are not removed from the graph, but are
only moved from the set of assigned vertices to the set of unassigned vertices. That is, if FC (L) denotes
the set of all vertices in forward components of L, then the domain(R (L)) = domain(L ) - FC(L} and,
for every pair of vertices z, y in domain{R (L)), R(L)(z) < R(L)y)iff L(z) < L(y). We will say
that a partial layout L is proper if, for all z in Ay, F (z) = Fr(1y(z).

We define the equivalence relation E(G ) on partial layouts L and M of G by: (L, M)isin E(G)
if (A,,B,,F,) = (XM. FM, Fyt). In constructing an algorithm to determine if a graph with n vertices
has vertex separation k, we never need to consider partial layouts with more than % active vertices.
There are O (n*) different ways to choose a vector of at most k active vertices, O (n*) different ways to
choose a set back(L, a), for each active vertex, and hence O (n*z) different ways to choose a vector of
back sets corresponding to all active vertices and O (n*’) = O (1) ways to choose the function F from
the chosen set of at most & active vertices to a non-negative integer < k. Consequently there are O (n™)
different equivalence classes in the equivalence relation E(G ), where m = k% + k. Our vertex separa-
tion algorithm is going to examine no more than one layout per equvalence class in E{G). As the
number of equivalence classes is polynomial, we are able to derive a polynomial time algorithm. We show
in the next section that the relation E(G) satisfies the necessary properties for the construction of a
dynamic programming algorithm.

We define two ezpension operations to be performed on partial layouts, called vertez addition and
component absorption . Let L be an arbitrary partial layout and y a vertex not in domain(L ). The
vertez addition process creates the partial layout L +y, by adding y to the right end of L. It is defined
by: (L +y)(z) = L(z), for all z in domain(L ), and (L +y )(y ) = |domain(L ) | +1.

Component absorption is a process whereby a component is inserted between nodes in a partial lay-
out. Absorbing a component C may result in some of the active vertices of L becoming inactive. Conse-
quently, for any k and m, it may be possible to absorb a component with vertex separation greater than

m into an interval with vertex separation £ -m and create a partial layout with vertex separation << k.

Let I denote the subset of A; which contains all vertices that become inactive through the absorp-

tion of C'. Define the J-augmentation of C, denoted by C[I], to be the graph such that:
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(1)  the set of vertices is vertices (C') U I and

(2)  the set of edges is edges(C) U { {y 2} |y in7 and 2 in vertices (C') such that {y,2}is an edge in
G}.

That is, C|I] is the graph obtained from ¢ by adding the vertices in [ and adding those edges of ¢

which connect vertices in J with vertices in (.

the first | integers. The T-anchored verter separation of C, denoted I-vs(C), is

min{es (C{I], L} | L isan f -anchored layout of C'}. Note that, as the vertices in I are not connected

set I is empty, i.e. g (G) = B-vs (@ ). Observe that a component C' whose absorption into a partial
layout L makes the set of vertices J inactive, can have J -anchored vertex separation m + |7 | and be
absorbed into an interva] with vertex separation k-m to produce a new partial layout with vertex separa-

tion k.
Component absorption can now be defined as follows:
(1)  Choose an unassigned ¢-component ¢ of G under L, for some ¢ >1,
(2) Choose position ; = best(L , ;)
(3) Increment the Position of all vertices in domain(L ) to the right of position j by ],

(4) Lay out the vertices in C, using positions in the range j +1 to j + 1€, by laying out the vertices
of C(I] in an order given by an [ -anchored layout with vertex separation less than some given

bound, where I is the subset of A, that become inactive through the absorption of ¢ .

Let L be a Partial layout of (. A partial Jayout 7! is  obtained from £ by
forward component realignment if every forward component of L is removed from domain(L) and
absorbed through component absorption. In this case we assume theat cacl, forward component is laid

out in the same order as jn the layout L, which is not necessarily an optimal order. Observe that forward
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component realignment never increases the vertex separation of a partial layout, as component absorption
always places a component into an optimal position for vertex separation. Let CR (L ) denote the partial

layout obtained from L by performing forward component realignment.

Notice that if, for every forward J—component C, the vertices of ¢ are in contiguous positions of
the partial layout, then the partial layout must be proper. For in such a case, for each active vertex u,
the positions just before and Just after a component have the same number of active vertices, as does the
common interval created by the component’s deletion. It follows that, for any partial layout L, CR (L)

is proper,

4.2, Supporting Lemmas

We develop two lemmas. We say that a partial layout L can be ezpanded if there is a sequence of

partial layouts L, L,, - - - | Ly, (p > 1) such that

1) L,=1L,

(2) forall s (1<i < ?), L4, is obtained from L; by an expansion step, i.e. by vertex addition or
component absorption,

(3) foralli (1 <+ =< p), L; has vertex separation at most k , and

(4} L, is a layout of the entire graph.

Lemma 4.1 states conditions sufficient to guarantee that, if L and M are partial layouts and L can be
expanded, then M can also be expanded. Lemma 4.2 states that at most one proper partial layout per

equivalence class need be considered.

Lemma 4.1 Let L and M be partial layouts of G such that the following conditions are satisfied:

(1) domain{L} C domain(M ),

(28) Ay isa subsequence of 4 , i.e. Ay s a subset of 4; and the verlices in Ay are in the same order
in .XM as they are in A, ,

(3) for all vertices « in Ay, Fr(v) = Fj(u) + (the number of vertices in AL to the left of best{L , u)

that are not in A4,,).
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If L can be expanded then M can be expanded.

Proof Let L =L(1),L{2), --- ,L(p) =L"' be a sequence of partial layouts with vertex separation
at most k such that, forall ¢, 1 < ¢ < p, L(¢+1) is obtained from L () by an expansion step and L'
is a layout of all of G. We show that there is a sequence M = M (1), M(2), - -+ , M(p) = M' of par
tial layouts with vertex separation at most k such that M(i+1) is either equal to M(f) or is obtained
from M(i) by an expansion step and M' is a layout of all of G. The sequence
M= M(1),M(2), +++ ,M(p)= M' is obtained by applying the same sequence of expansion steps
used to obtain the sequence L = L(1), L(2), --- ,L(p)= L', except that expansion steps that add
vertices or components already in domain(M ) are omitted. We show that the following conditions hold

forall¢,1 <1t < p, by induction:
(1) domain(L (1)) € domain(M ()},
(2) EM(,-) is a subsequence of Ay ()

(3) for all vertices 4 in Ap(), Fr){v) = Fy)(u) + (the number of vertices in Ap ;) to the left of
best(L (¢ ), » ) that are not in AM{,-)).

By our hypotheses, these conditions are satisfied for { = 1. We assume now that the four conditions are
satisfied for M () and show that they are satisfied for M (f +1). There are three cases. Either M (¢+1)is
obtained from M ({) by vertex addition or by component absorption or M (¢ +1) = M(f).

Casel M(i+l)=M(i}+y.

Hence L(i+1)=L({)+y. Domain(L(i})) C domain(M(i)) implies domain(L {i+1}} C
domain(M (¢ +1)). Any vertex in Ay (;) that becomes inactive because of the addition of y to L (i) must
also become inactive after the addition of y to M({{). Hence, EM(,-“) is a subsequence of XL(,-.“]. As
noted, active vertices in L (f) that become inactive through the addition of y are also active vertices of
M(i) and become inactive through the addition of y. Thus, for every vertex u in Ay
Fpian(e) = Fypan(t) + (the number of active vertices in L (¢ +1) to the left of best(L (i +1), v} that
are not active in M (¢ +1)). It is possible that the position of best(L, u ), for an active vertex u, changes
with vertex addition. If so, it is because the number of active vertices in the partial layout being is

smaller than at the previous best location. It lollows, as XM(,-“) is a subsequence of /_1'1,(”,), that in this
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case also we have the desired relation between Fy (;41) and Fiy(; 41).

If y is active in M (¢ )+y, then it is also active in L (i )+y, as domain (L (¢)) is a subset of domain
(M(5)). So, EM(,-“) is a subsequence of A} ¢+1)- Also Fii41)(y) = Fyga(y) + (the number of active
vertices of L (f+1) to the left of best(L ({+1), y) that are not active in M (¢ +1)), as best(L (f +1), y) is
clearly the last interval in the layout,

Case 2 M(i+1) = M(i)*C.
Then, L(i+1) = L (¢ }*C. Domain(L (¢)) € domain(M(i)) implies domain(L ({ +1)) € domain(M (i +1)).
Any active vertex of L (¢) that becomes inactive because of the absorption of C' into L (§) must also

become inactive after the absorption of C into M{¢). Hence, EM(.- +1) Is a subsequence of E'L (5 +1)-

For every vertex u in Ap(i41), FL(i41)(¢ ) = Fu41)() + (the number of active vertices in L (¢ +1)
to the left of best(L (¢ +1), » } that are not active in M (¢ +1)).
Case 3 M(i+1)= M(i).
Then, L ({+1) is obtained by either absorbing a component C' or adding a vertex y that is already in
domain(M (¢)). Consequently, domain(L ({+1)) C domain(M(f)) == domain(M (i +1)). Let u be an
active vertex of L {7) that becomes inactive through the addition of y or through the absorption of C'. It
follows that all remaining unassigned neighbors of ¥ are put into domain{L (1)) to make L (i +1). Since
these neighbors of ¥ that are added to L{f) to obtain L (f+1) are already in M({), the vertex u is
already inactive in M (i} = M (¢ +1). It follows that EM(-’+1) is a subsequence of Ay (i+1)- By hypothesis,
for every active vertex u in Ay, Fi(s)(¢) = Faf(u) + (the number of active vertices in L {7) to the
left of best(L (1), u) that are not active in M (1}). Active vertices in L (i) that become inactive through
the addition of y or the absorption of C simply decrease, for a given aciive vertex u, the number of
active vertices of L (i) to the left of best(L (1), ) that are not active in M () = M(:+1). Thus, for
every active vertex # in Ap(ipr), Fianle) = Fyir(u ) + (the number of active vertices in L (1 +1) to
the left of best(L (¢ +1), u ) that are not active in M (¢+1)}. N

Let CR(L) denote the pariial layout obtained from L by performing forward component realign-

ment, as defined in Section 4.1. Remember that, for any partial layout L, CR (L) is proper.

Corollary 4.1 For any expansible partial layout L, CR (L) is expansible.
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Proof Let M = CR(L). Observe that (1) domain(M) = domain(L ), (2) Ay = Ay, and (3) for all
active vertices v, Fiy (v ) < Fy (u). Then, by the proof of Lemma 4.1, using cases (1) and (2) only, it can
be seen that, if L is expansible, then M is expansible. W

Lemma 4.2 Let L and M be partial layouts of G in the same equivalence class of E(G) with
vs(G,L)<k and vs(G,M)< k. Then, there is a collection of connected components

§ ={C, Oy **+ ,0n} of G(Ay) such that all components in § can be absorbed into M without

exceeding vertex separation k resulting in a partial layout P with:

(1) domain(L) C domain(P),

(2) Ap is a subsequence of A, and

(8) forall u € Ap, Fy(u) = Fp(u)} + (the number of active vertices of L to the left of best(L, u)
that are not active in P)

Proof We show that vertices in domain(L ) but not in domain(M } can be added to domain{M) through

component absorptions to produce a partial layout P such that:

(1) domain(L ) is a subset of domain(P)

(2) Ap is a subsequence of A, and the active vertices of L that are not active in P are in domain(P),

(3) for all active vertices u in Ap, back(L, u ) = back(P, ) U {z €back(L,«) | £ € AL}, and

{4) for all active vertices ¥ in Ap, Fy (v) = Fp(u) + (the number of active vertices of L to the left of
best(L , # ) that are not active in P ).

Observe that conditions (2) through (4) are satisified initially when M is substituted for the partial
layout P, because M and L are in the same equivalence class of E(G}. We shall see that after each
component is absorbed we get a new partial layout that satisfies conditions (2) through (4). Thus, the

argument can be iterated until all vertices z € domain(L ) - domain(M ) have been absorbed.

Let z be any vertex in domain(L ) - domain(M ). Vertex = cannot be active, as all vertices active in
L are in domain(M ). Consider the connected component C, containing z in the graph G (A, } obtained
by deleting the active vertices of L from G . We have already observed that such a component €, must

be entirely in or entirely out of the domain of the partial layouts L and M, because it contains no active
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vertices. Hence, all vertices in C, must be in domain(L ) - domain(Af ).

Let C, be a j-component of G under L, for some § > 1. C, must be laid out in L so that all of
its vertices lie to the right of the j* active vertex, say e;, of L. If any vertex of C, lay to the left of
a;, then some vertex, say y, of C;, would be in back(L, a;). However, since
back(L, a;) = back(M, a;) U {z €back(L,q;) | = €A, }, it follows that y would be in domain(}).
As no vertex of C, is in domain(M ), this is a contradiction. So, C; is a forward component in the lay-

out L.

Let L' be the partial layout obtained by removing C, from the domain of L. As L is proper,
Fy(a;) = Fpr(a;). Consequently, as L has vertex separation at most k¥, C; must have vertex separation
at most k — Fy, (a;). As Fyy(e;) < Fy{a;), C, can be absorbed as a forward component into the layout
M in the position best{M, a;) which has Fy(a;) active vertices. M' = M+C, may have a smaller set of
active vertices than L , as some of the active vertices of M may no longer be active when C is absorbed.
However, no new active vertices are created by absorbing the connected component (., so Ay is a
subsequence of .71}, . All active vertices of M that become inactive through the absorption of C, are no
longer in the back sets of active vertices of M' to the right of the point of absorption. All other back
sets are unchanged by the absorption of C,. By hypothesis, for all active vertices v in M,
back(L, v) = back(M,u) U {z €back(L,«) | £ €A, }. Thus, for all active vertices » in M/,
back(L , ) = back(M', u) U {z €back(L,u)|z € AL }. By hypothesis, for every active vertex z €
Ay, Fi(z) = Fy(z) + {the number of active vertices in L to the left of best(L , z ) that are not active
in M). The absorption of the component C, into M may cause some of the active vertices of M to
become inactive, but that will simply increase the second term on the right side of the equality. Thus, for
every active vertex z in Ay’, Fy(z) = Fy:(z) + (the number of active vertices in L to the left of

best(L , z } that are not active in M").

So, conditions (2) through (4) are satisfied when M is substituted for M. Thus, the argument can
be repeated until obtaining a partial layout P = M+C, *Cy ¢ - -+ #C;, where Cy, Cy, - -+ , O} are
all the forward components of L that are not in domain{M ). As all vertices in domain(L ) - domain(M)

will be absorbed in components to create P, domain(L ) is a subsct of domain(P). So, conditions (1)
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through (4) are satisfied.

Corollary 4.2 Let L and M be proper partial layouts of G in the same equivalence class of E(G ) with
vs(G,L} < k and vs(G, M) < k. ¥ L can be expanded, then M can be expanded.

Proof By Lemma 4.2 we can expand M to a partial layout P such that:
(1) domain{L )} < domain(P),
(2) Ap is a subsequence of Ay, and

(3) for all v € Ap, Fi(u) = Fp(¢) + (the number of active vertices of L to the left of best(L, u)

that are not active in P }.

Then, by Lemma 4.1, as L can be expanded, P can be expanded. As P is an expansion of M, M can

also be expanded. W
4.3. A Vertex Separation Algorithm for Graphs

An algorithm is described which decides, for a graph &, a set of vertices I in G, and a positive integer
k, whether @ has an [-anchored layout with vertex separation at most k. The algorithm is defined
below as a function, called separation(G, [, k). It uses the equivalence classes induced by the relation
E(G@). Given some partial layout L of G the procedure generates new partial layouts both by absorbing
unassigned components of G (A, ) and by adding each unassigned vertex. The partial layouts produced by

these processes are considered further only il they are in a previously unexplored equivalence class.

The algorithm uses a stack S, which contains partial layouts of ¢/, and a Boolean array T such
that T(A, B, F) = true if and only if the equivalence class (A, B, F) has been previously considered.
Initially T(A, B, F) = false, for all (A, B, F), and the stack § contains only the partial layout L;,

which has the set / as its domain, the vertices in J being mapped to the integers 1, ..., |/] arbitrarily.



function separation(Q, I, k ): Boolean;
begin

empty(S); Push(L;, 5}, successful 1= false;

searchlayout(q, s » k); separation :— suecessful

end:

t

procedure searchlayout (G,1, k)
begin L .= pop($);

if 4; 5 § then begin

absorb ;= true;

while ¥ =£ ¢ and absorb do

{Absorb as many components as possible}
begin X .= Y, Y=g

absorb :— lalse;
while X 5£ ¢ do

begin Remove a connected component ¢ from X;

Let 7' be the set of vertices in Ay, that become inacti
L

{Let A, — (a1, a5 --- » @m } and let ¢ be an j-component of ¢ under Z }
it Fy (a;) > [7'| and separation (Clr], 1, k ~Fle )+ |17
then begin  absorh true; L := L+C end elge Y =vYu{c }
end end end;

ifL £ I, and AL = 0 then successful := trye

else for each vertex o not in domain(L ) do {Add each remaining vertex)

begin L/ .— J +z; M= CR(L');

if not T(X,,,,B'M, Fu)and | 4,, | <&

then begin TTAM, §M ,
push(M, S} end

Fy) = true;

end end;

38
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Lemma 4.3 The algorithm separation(G, I, k )} is correct.

Proof Let G be a finite undirected graph, I a set of vertices of & and k¥ a positive integer. First we
show that, if there is an I-anchored vertex separation < k layout of G, then separation(G', I, k) will
terminate with the value true. Observe that the algorithm on such arguments places the partial layout
L; on the stack S and calls the algorithm searchlayout(G', I, k). The initial partial layout on the stack,
namely L = L;, can be expanded by hypothesis. We show that when an expansible partial layout L is
removed from the stack, the algorithm either halts, returning the value true, or places at some step an
expansible proper partial layout, say M, on the stack such that domain(M ) properly contains domain{L ).
Observe that the algorithm searchlayout first absorbs into I all unassigned components that can be
absorbed without making the vertex separation greater than k. The result is a partial layout, say L °,

which together with L, satisfies Lemma 4.1. Thus, L * is expansible.

Note that, for some unassigned J-component C and set of vertices /' which become inactive by
the absorption of C, if [I']| > F, (a;), then all active vertices at position best(L , a; ) become inactive.
This is a contradiction, unless best(L , a;) is the rightmost position in the layout, because, il we eliminate
all active vertices then no edges can connect vertices to the right of the position to those to its left and
the graph is assumed to be connected. Furthermore, if best(L , a,} is the rightmost position, then we can
use vertex addition and not component absorption. So, we assume that Fi(e;) > | I'| and hence k-
Fi(aj)+ |1'] < k.

As no more component absorptions can be done to L * and L * is expansible, it must be possible to
expand L ° by first doing a vertex addition step, say to obtain L' = L* + y. The algorithm tries all
possible vertex additions and therefore considers the partial layout L’. The algorithm then computes M
= CR(L') which is proper. Notice that, by Corollary 4.1, M is expansible, as L' is expansible. In par-

ticular, M has at most & active vertices. The algorithm does one of the following:
(1) it places M on its stack, or

(2) it observes that some other partial layout, say @, in the same equivalence class as M, has already

been placed on the stack.
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In (1), as domain(L } is a proper subset of domain(M ), placing M on the stack establishes our claim. In
(2) we note that either @ is removed from the stack at some time or the algorithm halts with a positive
answer. Observe that, by Corollary 4.2, Q is expansible. I @ is removed from the stack, then the algo-
rithm absorbs all possible components into @ to obtain a partial layout @ *. By Lemma 4.1, as @ is
expansible, @ * is expansible. As all components are absorbed into Q to form @ * and M and Q are in
the same equivalence class, by Lemma 4.2, domain{M ) is a subset of domain(Q "). As Q@ ° is expansible
and all component absorptions have been done, Q‘ can be expanded by a vertex addition, say to
@' = Q" + z. The algorithm tries all possible vertex additions, so it generates @' = Q@ * + z. It then
computes M' = CR(Q"'), which is proper. Note that M’ is expansible, as @' is expansible. In particu-
lar, M’ has at most k£ active vertices. Furthermore, domain(M') properly contains domain(M ). Now,
substituting M’ for M, we can repeat the argument but with a partial layout M’ with a larger domain
than M. Hence, at some point we run out of vertices, and hence the algorithm halts with a positive
answer, or an expansible partial layout with larger domain than L is placed on the stack. The rcader
may observe that the partial layout L' in the algorithm is not in the same equivalence class as L. Thisis
because L' = L + z and no more component absorptions can be done to L, hence z must be a new
active vertex. That is, il £ were not active, then it would be a component consisting of an isolated vertex
and hence have vertex separation 0. Such components can always be absorbed, which would contradict

the assumption that L has no more possible component absorptions.

It follows that, if there is a layout of all of G with vertex separation at most k, then the algorithm
will terminate, returning the value true. On the other hand, il the algorithm returns the value true, then
it has found a layout with vertex separation k. So, the algorithm returns the value true if and only if the

graph has vertex separation £ . H

4.4. Implications

Because of the relationships between the vertex separation problem and the search number and peb-
bling problems previously described, the algorithm given for vertex separation can be used Lo measure
these properties also. Hence we can say something about the complexity of all three problems.

Theorem 4.1 For each positive integer k , graphs with vertex separation at most & can be recognized in
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O (n™) steps, where m = k? + 2k + 4,

Proof For reasons of efficiency we replace the recursive step, i.e. the «call to
separation(C /'], I', k — F,(a;)+ | I']) in the procedure searchlayout by a table look up. We create a
table, call it Look(k )}, which contains, for every possible set V of at most k vertices in G, and every pos-
sible connected component €' of G (V), every possible integer { <k, and every subset V' of V, an indi-
cation of whether C{V'| has a V'-anchored layout with vertex separation at most i. Having Look(k)
available, we can answer the question of whether an augmented component C[I'] has an I'-anchored lay-
out with vertex separation at most k¥ ~ F (a;)+ | I'| (< k) by looking in the table rather than by exe-

cuting the procedure,

Look{k ) is constructed iteratively. One first removes each subset V of at most & vertices from G
and determines which connected components in the resulting graph have vertex separation 0. This takes
O (1) time for each component, as a connected graph has vertex separation 0 iff it is an isolated vertex.
Next we remove each subset V of at most k-1 vertices and for each subset V' of V and each connected
component C' of G (V') we run our algorithm separation(C [V'], V', 1), as written, except that recursive
calls for components with vertex separation 0 are replaced by table look up using the values already com-
puted. Continuing in this way we add to Look(k) information about whether components obtained by
deleting at most k -5 vertices have vertex separation 5, by using information already in the table instead
of recursive calls to the procedure. That is, any recursive call will be for a component obtained by delet-
ing some set of k — 5 + ¢ vertices, for some 1 < ¢ < 7, and some vertex separation value less than ;.

All such information will already be in the table Look(k ).

We thus consider for removal all possible vertex sets V of size j, for § < k. There are O (n*)
such sets. For each such set V deleted there are O (2¥), i.e. O(1), subsets V* and at most O(n) con-
nected components € in the graph G (V). For each such component C of G(V'), each subset V' of V,
and each integer ¢, (0 < § <4 k), we call the procedure separation(C [V'], V', i). We assume that the
recursive calls stated in the procedure are made by table look up and take O (1) time. Running the algo-
rithm results in the consideration of no more than one partial layout from each equivalence class and for
each representative considered some time is used in computing new partial layouts. There are O (rn™)

equivalence classes, where m = k? + k. We calculate now the amount of time to compute new partial
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layouts for each representative. For a given partial layout L there are at most O (n ) unassigned con-
nected components and each component is considered at most O (n ) times for absorption. The algorithm
then considers all possible vertex additions to the partial layout L' obtained after all possible component
absorptions. There are at most O (n) unassigned vertices possible for vertex addition. For each partial
layout L'+ y the algorithm computes CR (L' + y}, which takes O (%) time. Thus, O (n®) steps are
needed for computing new partial layouts from a given representative. Consequently, an upper bound on
running the algorithm given the table Look{k ) is O (n?) time, where p = k% +k + 3. Therefore, as the
algorithm is run at most O {n* + 1) times for computing the table Look(k ), the entire process requires at
most O (n?) steps, where ¢ = k2 + 2k + 4.

Corollary 4.3 For each fixed value k, the problem of recognizing graphs with search number at most &
can be done in O (n™) time, where m = 2k% + 4k + 8.

Proof In Section 2 we showed that a graph G has search number k iff the graph G’ has vertex separa-
tion k, where G’ is the graph obtained from G by subdividing each of the edges of G with two, degree
2 vertices. Since the number of vertices in G' is bounded by O (n?%), where n is the number of vertices in
G, the indicated bound follows from Theorem 4.1. W

Corollary 4.4 For each fixed value k, the problem of recognizing dags with progressive black /white
pebble demand at most k& can be done in O (n™) steps, where m = k%24 3.

Proof The corollary follows from Theorem 4.1 and a transformation described by Lengauer [Lengsi]
from the black/white pebble demand problem to the vertex separation problem. Lengauer’s transforma-
tion takes a directed acyclic graph G and creates an undirected graph G' whose edges are those of G,
without their direction, plus edges connecting every pair of vertices that are predecessors of the same ver-
tex in G. Lengauer shows that G has progressive black/white pebble demand & iff G ' has vertex

separation k-1. Since G and G' have the same number of vertices, the result follows. W

Although we have shown a polynomial time bound, the degree of the polynomial is too large for the

algorithm to be practical. We leave open the question of whether graphs with vertex separation at most

k can be recognized in O (n*) steps.
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The vertex separation of this layout is 4

The vertex separation of this layout is 3

Figure 1.1 K3 . and Two Linear Layouts



The vector of active vertices is (F, G, H, |, E).

There are 6 dangling edges incident to these vertices.

Figure 1.2 A Partial Layout of the Petersen Graph
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Added (a, b) and Original (x, y) Vertices
and Their Possible Relative Positions
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Figure 2.1. (b) Added (a, b) and Original (x, y) Vertices
and Their Possible Relative Positions
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Figure 3.1 A Tree and the Trees Induced by the Vertex x.



Figure 3.2 Laying Out the Subtrees of Sequence Members

The paths from a to x and from b to x are not disjoint

Figure 3.3 Removing a Path from a Layout
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A subtree with vertex separation 2

The vertex x induces 3 subtrees with vertex separation 2

Figure 3.4 A Tree with Vertex Separation 3.
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A subtree with vertex separation 2
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The vertex x induces 3 subtrees with vertex separation 2

Figure 3.5 A Tree with Vertex Separation 3.



Figure 3.6 A Degree 3 Tree with Cutwidth 5 and Vertex Separation 3.
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Computing the Labe] of the Root
Figure 3.7 An Example of the Effect of the Labelling Algorithm



AL= {a,d, m}
back(L, a)={} back(L, d)={a, b,c} back(L, m}={a,d,j}
FR@=1 F{d)=3 F(m)=3

best(L,a) =1 best(L,d)=7 best(L, m)=12

The graph ( {b, e, k}, {{b, €}.{e, k}} ) is a forward 1-component

Figure 4.1 A Partial Layout, L
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