42 research outputs found

    Evaluation of regional ocean circulation models for the Mediterranean Sea at the Strait of Gibraltar: volume transport and thermohaline properties of the outflow

    Get PDF
    Se adjunta la versión postprint aceptada, que incluye las correcciones de de los revisores, debido a que la editorial tiene los derechos de copyright y no permite la difusión en acceso abierto de la versión publicada. Puede accederse a la misma a través del DOI que se incluye en los datos de la publicación.A set of simulations from different configurations of the NEMOMED8, NEMOMED12 and NEMOMED36 ocean regional circulation models for the Mediterranean Sea has been studied in order to assess the accuracy of their representation of the exchange through the Strait of Gibraltar. The model volume transport and thermohaline properties of the Mediterranean outflow have been compared with observational data collected at Espartel sill, the westernmost sill of the strait, by a permanent station moored since October 2004 in the frame of the INGRES projects. Results show that, in terms of volume transport, NEMOMED8 simulations perform a better representation of the exchange, while NEMOMED12/36 underestimate both the mean inflow and outflow. The reason for this underestimation is a too low velocity of the flow, which could be consequence of an enhanced roughness effect due the flow-bathymetry interaction. An important improvement in the representation of the exchange seasonality is achieved by the simulations including sea surface height variability of the Atlantic area of the domain. The results for the themohaline characteristics of the Mediterranean outflow are better for NEMOMED12 and NEMOMED36, as a consequence of their better representation of the local dynamical processes that leads to a more realistic composition of the Mediterranean waters comprising the flow.Este trabajo se llevó a cabo en el marco del proyecto P07-RNM-02938 financiado Junta de Andalucía. También se contó con apoyo parcial del proyecto CTM2010-21229/MAR (INGRES 3, Ministerio de Ciencia y Tecnología

    On the seasonality of eddies in the Western Mediterranean Sea: answers with altimetry and modeling.

    Get PDF
    Trabajo presentado en la EGU General Assemby 2013, celebrada del 7 al 12 de abril de 2013 en Viena (Austria)Eighteen years of weekly SLA merged maps in the Western Mediterranean are analyzed using the new method proposed by Chelton et al. (2011) to identify and track mesoscale eddies. The method has been adapted to take into account the specificity of the Mediterranean basin. Results are similar to the global ocean results with a radius smaller due to a smaller Rossby radius. The areas of intense rotational speed and amplitude of eddies are similar to the areas of intense eddy kinetic energy calculated from altimetry sea level anomalies. Eddies propagation speed shows a wide range of values without a clear preferred direction. Nevertheless, eddies seems to propagate following the main currents. Temporal analysis of the number of eddies per day is made focusing on the annual and semiannual variability. This annual and semi-annual cycle is analyzed using a regional model of the Mediterranean Sea and studying the interaction with atmospheric forcingsPeer reviewe

    Modélisation de la variabilité climatique de la circulation et des masses d'eau en Méditerranée : impacts des échanges océan-atmosphère.

    No full text
    This thesis aims at progressing on key points about the realistic reproduction of the formation and the paths of the Mediterranean water masses, and their variability. For that purpose, several regional oceanic models of the Mediterranean Sea, with different horizontal resolutions, are developped and used. A realistic configuration, representing the interannual variability of the boundary conditions of these models (atmosphere, Atlantic Ocean, rivers, Black Sea) is used to carry out long-term simulations of the Mediterranean for the last 50 years. Two rare events, characterising the decennial variability in the Mediterranean, are studied: the Eastern Mediterranean Transient (EMT) and the Western Mediterranean Transition (WMT). The EMT is a period, at the beginning of the 1990's, during which the main site of dense water formation in the eastern Mediterreanean basin switched from the Adriatic subbasin to the Aegean subbasin. The ability of the long-term simulations to reproduce the sequence of the EMT events is first proved. Among the preconditionning and triggering elements of the EMT suggested in the literature, we show that the main factors are the intense winter fluxes over the Aegean subbasin during winters 1992 and 1993. The realism of the Cretan Deep Water (CDW) formation and propagation during the EMT is then analysed in reference and sensitivity simulations. The spreading of the CDW on the bottom of the eastern Mediterranean is only reproduced with modified atmospheric conditions. The WMT has been starting during winter 2005 in the Gulf of Lions, during which a huge volume of Western Mediterranean Deep Water (WMDW) was formed with unusual high temperature and salinity. The simulations reproduce the intensity of the winter 2005 deep convection in the Gulf of Lions, which is due to the strong surface buoyancy loss. They also show that 100-km width deep cyclonic eddies are responsible for the fast southwards spreading of the new WMDW. Then, the long-term simulations allow to set back the WMT in the decennial variability of the north-western Mediterranean. They show that the EMT potentially doubled the volume of new WMDW formed in winter 2005 in the Gulf of Lions, but that it is not responsible for the high temperature and salinity of the new WMDW. These unusual characteristics are due to the absence of intense convection in the Gulf of Lions during the 1990's, which favours a salt and heat accumulation in the north-western Mediterranean.Cette thèse a pour but de progresser sur des points essentiels concernant le réalisme de la représentation de la formation et du trajet des masses d'eau en Mer Méditerranée, ainsi que de leur variabilité. A cet effet, plusieurs modèles océaniques régionaux de la Méditerranée, de résolutions horizontales différentes, sont développés et utilisés. Une configuration réaliste permettant de représenter la variabilité interannuelle des conditions aux limites de ces modèles (atmosphère, océan Atlantique, fleuves, mer Noire) est utilisée pour réaliser des simulations à long terme des 50 dernières années en Méditerranée. Deux événements rares, caractérisant la variabilité décennale en Méditerranée, sont étudiés : l'Eastern Mediterranean Transient (EMT) et la Western Mediterranean Transition (WMT). L'EMT est la période, au début des années 1990, pendant laquelle le site principal de formation d'eau dense dans le bassin oriental méditerranéen est passé du sous-bassin Adriatique au sous-bassin Egée. La capacité des simulations à long terme à reproduire la séquence d'événements composant l'EMT est tout d'abord démontrée. Parmi les éléments de préconditionnement et de déclenchement de l'EMT suggérés dans la littérature, nous montrons que les facteurs essentiels sont les flux hivernaux intenses au-dessus du sous-bassin Egée pendant les hivers 1992 et 1993. Le réalisme de la formation et de la propagation de l'eau crétoise profonde (Cretan Deep Water, CDW) pendant l'EMT est ensuite analysé dans les simulations de référence et de sensibilité. La propagation de la CDW au fond de la Méditerranée orientale n'est reproduite qu'avec des conditions atmosphériques modifiées. La WMT a commencé à l'hiver 2005 dans le Golfe du Lion, pendant lequel a été formé un volume très important d'eau profonde ouest-méditerranéenne (Western Mediterranean Deep Water, WMDW), caractérisée par une température et une salinité inhabituellement élevées. Les simulations reproduisent l'intensité de la convection profonde dans le Golfe du Lion pendant l'hiver 2005, qui est est due à la forte perte de flottabilité en surface. Elles indiquent également que des tourbillons cycloniques profonds, d'une centaine de kilomètres de diamètre, sont responsables du transport rapide de la nouvelle WMDW vers le Sud. Puis, les simulations à long terme permettent de replacer la WMT dans la variabilité décennale de la Méditerranée nord-occidentale. Elles montrent que l'EMT a potentiellement doublé le volume de nouvelle WMDW formé en 2005 dans le Golfe du Lion, mais qu'il n'est pas responsable de la température et de la salinité élevées de la nouvelle WMDW. Ces caractéristiques inhabituelles sont dues à l'absence de convection intense dans le Golfe du Lion pendant les années 1990, ce qui a favorisé l'accumulation de sel et de chaleur dans la Méditerranée nord-occidentale

    Modélisation de la variabilité climatique de la circulation et des masses d'eau en Méditerranée : impacts des échanges océan-atmosphère

    No full text
    Cette thèse a pour but de progresser sur des points essentiels concernant le réalisme de la représentation de la formation et du trajet des masses d'eau en Mer Méditerranée, ainsi que de leur variabilité. A cet effet, plusieurs modèles océaniques régionaux de la Méditerranée, de résolutions horizontales différentes, sont développés et utilisés. Une configuration réaliste permettant de représenter la variabilité interannuelle des conditions aux limites de ces modèles (atmosphère, océan Atlantique, fleuves, mer Noire) est utilisée pour réaliser des simulations à long terme des 50 dernières années en Méditerranée. Deux événements rares, caractérisant la variabilité décennale en Méditerranée, sont étudiés : l'Eastern Mediterranean Transient (EMT) et la Western Mediterranean Transition (WMT). L'EMT est la période, au début des années 1990, pendant laquelle le site principal de formation d'eau dense dans le bassin oriental méditerranéen est passé du sous-bassin Adriatique au sous-bassin Egée. La capacité des simulations à long terme à reproduire la séquence d'événements composant l'EMT est tout d'abord démontrée. Parmi les éléments de préconditionnement et de déclenchement de l'EMT suggérés dans la littérature, nous montrons que les facteurs essentiels sont les flux hivernaux intenses au-dessus du sous-bassin Egée pendant les hivers 1992 et 1993. Le réalisme de la formation et de la propagation de l'eau crétoise profonde (Cretan Deep Water, CDW) pendant l'EMT est ensuite analysé dans les simulations de référence et de sensibilité. La propagation de la CDW au fond de la Méditerranée orientale n'est reproduite qu'avec des conditions atmosphériques modifiées. La WMT a commencé à l'hiver 2005 dans le Golfe du Lion, pendant lequel a été formé un volume très important d'eau profonde ouest-méditerranéenne (Western Mediterranean Deep Water, WMDW), caractérisée par une température et une salinité inhabituellement élevées. Les simulations reproduisent l'intensité de la convection profonde dans le Golfe du Lion pendant l'hiver 2005, qui est est due à la forte perte de flottabilité en surface. Elles indiquent également que des tourbillons cycloniques profonds, d'une centaine de kilomètres de diamètre, sont responsables du transport rapide de la nouvelle WMDW vers le Sud. Puis, les simulations à long terme permettent de replacer la WMT dans la variabilité décennale de la Méditerranée nord-occidentale. Elles montrent que l'EMT a potentiellement doublé le volume de nouvelle WMDW formé en 2005 dans le Golfe du Lion, mais qu'il n'est pas responsable de la température et de la salinité élevées de la nouvelle WMDW. Ces caractéristiques inhabituelles sont dues à l'absence de convection intense dans le Golfe du Lion pendant les années 1990, ce qui a favorisé l'accumulation de sel et de chaleur dans la Méditerranée nord-occidentaleThis thesis aims at progressing on key points about the realistic reproduction of the formation and the paths of the Mediterranean water masses, and their variability. For that purpose, several regional oceanic models of the Mediterranean Sea, with different horizontal resolutions, are developped and used. A realistic configuration, representing the interannual variability of the boundary conditions of these models (atmosphere, Atlantic Ocean, rivers, Black Sea) is used to carry out long-term simulations of the Mediterranean for the last 50 years. Two rare events, characterising the decennial variability in the Mediterranean, are studied: the Eastern Mediterranean Transient (EMT) and the Western Mediterranean Transition (WMT). The EMT is a period, at the beginning of the 1990's, during which the main site of dense water formation in the eastern Mediterreanean basin switched from the Adriatic subbasin to the Aegean subbasin. The ability of the long-term simulations to reproduce the sequence of the EMT events is first proved. Among the preconditionning and triggering elements of the EMT suggested in the literature, we show that the main factors are the intense winter fluxes over the Aegean subbasin during winters 1992 and 1993. The realism of the Cretan Deep Water (CDW) formation and propagation during the EMT is then analysed in reference and sensitivity simulations. The spreading of the CDW on the bottom of the eastern Mediterranean is only reproduced with modified atmospheric conditions. The WMT has been starting during winter 2005 in the Gulf of Lions, during which a huge volume of Western Mediterranean Deep Water (WMDW) was formed with unusual high temperature and salinity. The simulations reproduce the intensity of the winter 2005 deep convection in the Gulf of Lions, which is due to the strong surface buoyancy loss. They also show that 100-km width deep cyclonic eddies are responsible for the fast southwards spreading of the new WMDW. Then, the long-term simulations allow to set back the WMT in the decennial variability of the north-western Mediterranean. They show that the EMT potentially doubled the volume of new WMDW formed in winter 2005 in the Gulf of Lions, but that it is not responsible for the high temperature and salinity of the new WMDW. These unusual characteristics are due to the absence of intense convection in the Gulf of Lions during the 1990's, which favours a salt and heat accumulation in the north-western MediterraneanPALAISEAU-Polytechnique (914772301) / SudocSudocFranceF

    Eddy properties in the Western Mediterranean Sea from satellite altimetry and a numerical simulation

    Get PDF
    Three different eddy detection and tracking methods are applied to the outputs of a high-resolution simulation in the Western Mediterranean Sea in order to extract mesoscale eddy characteristics. The results are compared with the same eddy statistics derived from satellite altimetry maps over the same period. Eddy radii are around 30 km in altimetry maps whereas, in the model, they are around 20 km. This is probably due to the inability of altimetry maps to resolve the smaller mesoscale in the region. About 30 eddies are detected per day in the basin with a very heterogeneous spatial distribution and relatively short lifespans (median life around 13 days). Unlike other areas of the open ocean, they do not have a preferred direction of propagation but appear to be advected by mean currents. The number of detected eddies seems to present an annual cycle when separated according to their lifespan. With the numerical simulation, we show that anticyclones extend deeper in the water column and have a more conic shape than cyclones.R. Escudier was supported by the PhD CSIC-JAE program funded by the European Social Fund (ESF). A. Pascual acknowledges support from the Spanish National Research Program (E-MOTION/CTM2012-31014). D. Chelton was supported by NASA grant NNX13AD78G. This work is a contribution to the MyOcean Follow-On project (H2020-SPACE/0003881) and PERSEUS FP7 (287600) projects.Peer Reviewe

    Analysis of specific water masses transports in the Western Mediterranean in the MEDRYS1V2 twenty-one-year reanalysis

    No full text
    We present an analysis of specific water masses fluxes in the Western Mediterranean Sea issued from a twenty years (1992-2013) reanalysis (MEDRYS1V2). Water masses are identified on the base of salinity and potential density properties and computes; the fractions of each water mass involved in total flux are computed under the hypothesis assumptions of mixing lines schemes. It was first designed in order to avoid rough truncations between water masses on the T-S diagram when using fixed thermo-haline properties thresholds. The method does not use the temperature marker due to its high seasonal variability in near surface waters (0-200 m) and we consider that potential density is a better marker to discriminate deep and intermediate water masses. The algorithm discriminates successively five different water masses : the Atlantic Water (AW) incoming from the Gibraltar strait (salinity between 36,1 and 38,45 PSU), the Levantine Intermediate Waters (LIW) incoming from the Tunisia-Sicily strait (salinity between 38,45 and 39.1 PSU), the Modified Atlantic Waters (MAW) defined as near-surface waters (potential density less than 28,9 kg m-3) that are neither AW or LIW, while Western Intermediate Waters (WIW) are those remaining until the σθ = 29,10 kg m-3 threshold for Western Mediterranean Deep Waters (WMDW) is reached. Such computed fractions of each water mass, whose sum is constrained to unity, are then used to compute their water masses transports all along over twenty years of the reanalysis. The transport are assessed across computed on key transects delimiting known sub-basin entities (Ligurian Sea, Gulf of Lion, Balearic Sea...), with total transports showing balanced mass budget. The such computed total transport reveal marked differences in their seasonal to interannual variability, while the analysis of the water mass transports allows to identify those which mainly implied induced these variability. The results first show a low seasonal and no significant interannual variability at the exit of the Alboran Sea that results from the balance between the eastward AW/MAW outflow and the westward WIW and WMDW inflows. The Corsican strait, the Ligurian Sea line and Tunisia-Sardinia straits show a marked seasonal variability (0,37-0,39 Sv) mainly driven by the AW/MAW. By contrast, a strong interannual variability dominates the seasonal one (-2 to 1 Sv) between the Algerian Basin and the northern basin, correlated to the WMDW formation. The analysis of each specific water masses transport pointed out that shows this marked variability to be first driven by the intermediate and deep water masses transports. Similarly the interannual variability of the AW and MAW transports in the central part of the Western Mediterranean suggests some coupling between the deep, intermediate and surface water masses, even through the shallower Balearic Sea

    Analyse des transports spécifiques des masses d'eau en Méditerranée occidentale dans la réanalyse de vingt et un ans de MEDRYS1V2.

    No full text
    International audienceWe present an analysis of specific water masses fluxes in the Western Mediterranean Sea issued from a twenty years (1992-2013) reanalysis (MEDRYS1V2). Water masses are identified on the base of salinity and potential density properties and computes; the fractions of each water mass involved in total flux are computed under the hypothesis assumptions of mixing lines schemes. It was first designed in order to avoid rough truncations between water masses on the T-S diagram when using fixed thermo-haline properties thresholds. The method does not use the temperature marker due to its high seasonal variability in near surface waters (0-200 m) and we consider that potential density is a better marker to discriminate deep and intermediate water masses. The algorithm discriminates successively five different water masses : the Atlantic Water (AW) incoming from the Gibraltar strait (salinity between 36,1 and 38,45 PSU), the Levantine Intermediate Waters (LIW) incoming from the Tunisia-Sicily strait (salinity between 38,45 and 39.1 PSU), the Modified Atlantic Waters (MAW) defined as near-surface waters (potential density less than 28,9 kg m-3) that are neither AW or LIW, while Western Intermediate Waters (WIW) are those remaining until the sigma(theta) = 29,10 kg m-3 threshold for Western Mediterranean Deep Waters (WMDW) is reached. Such computed fractions of each water mass, whose sum is constrained to unity, are then used to compute their water masses transports all along over twenty years of the reanalysis. The transport are assessed across computed on key transects delimiting known sub-basin entities (Ligurian Sea, Gulf of Lion, Balearic Sea...), with total transports showing balanced mass budget. The such computed total transport reveal marked differences in their seasonal to interannual variability, while the analysis of the water mass transports allows to identify those which mainly implied induced these variability. The results first show a low seasonal and no significant interannual variability at the exit of the Alboran Sea that results from the balance between the eastward AW/MAW outflow and the westward WIW and WMDW inflows. The Corsican strait, the Ligurian Sea line and Tunisia-Sardinia straits show a marked seasonal variability (0,37-0,39 Sv) mainly driven by the AW/MAW. By contrast, a strong interannual variability dominates the seasonal one (-2 to 1 Sv) between the Algerian Basin and the northern basin, correlated to the WMDW formation. The analysis of each specific water masses transport pointed out that shows this marked variability to be first driven by the intermediate and deep water masses transports. Similarly the interannual variability of the AW and MAW transports in the central part of the Western Mediterranean suggests some coupling between the deep, intermediate and surface water masses, even through the shallower Balearic Sea.Nous présentons une analyse des flux de masses d'eau spécifiques dans la mer Méditerranée occidentale issus d'une réanalyse sur vingt ans (1992-2013) (MEDRYS1V2). Les masses d'eau sont identifiées sur la base des propriétés de salinité et de densité potentielle et calculées ; les fractions de chaque masse d'eau impliquées dans le flux total sont calculées sous les hypothèses des schémas de lignes de mélange. Cette méthode a été initialement conçue pour éviter les troncatures grossières entre les masses d'eau sur le diagramme T-S lors de l'utilisation de seuils fixes de propriétés thermo-halines. La méthode n'utilise pas le marqueur de température en raison de sa grande variabilité saisonnière dans les eaux proches de la surface (0-200 m) et nous considérons que la densité potentielle est un meilleur marqueur pour discriminer les masses d'eau profondes et intermédiaires. L'algorithme discrimine successivement cinq masses d'eau différentes : les eaux atlantiques (AW) provenant du détroit de Gibraltar (salinité entre 36,1 et 38,45 PSU), les eaux intermédiaires du Levant (LIW) provenant du détroit de Tunisie-Sicile (salinité entre 38,45 et 39. 1 PSU), les eaux atlantiques modifiées (MAW) définies comme des eaux proches de la surface (densité potentielle inférieure à 28,9 kg m-3) qui ne sont ni AW ni LIW, tandis que les eaux intermédiaires occidentales (WIW) sont celles qui restent jusqu'à ce que le seuil sigma(theta) = 29,10 kg m-3 pour les eaux profondes de la Méditerranée occidentale (WMDW) soit atteint. Ces fractions calculées de chaque masse d'eau, dont la somme est contrainte à l'unité, sont ensuite utilisées pour calculer les transports de leurs masses d'eau tout au long des vingt années de la réanalyse. Les transports sont évalués à travers les calculs sur des transects clés délimitant des entités de sous-bassins connues (mer Ligure, golfe du Lion, mer Baléares...), avec des transports totaux montrant un bilan de masse équilibré. Les transports totaux ainsi calculés révèlent des différences marquées dans leur variabilité saisonnière et inter-annuelle, tandis que l'analyse des transports de masse d'eau permet d'identifier ceux qui ont principalement induit cette variabilité. Les résultats montrent d'abord une faible variabilité saisonnière et une variabilité inter-annuelle non significative à la sortie de la mer d'Alboran qui résulte de l'équilibre entre le flux sortant AW/MAW vers l'est et les flux entrants WIW et WMDW vers l'ouest. Le détroit de Corse, la ligne de la mer Ligure et les détroits de Tunisie et de Sardaigne présentent une variabilité saisonnière marquée (0,37-0,39 Sv) principalement due à l'AW/MAW. En revanche, une forte variabilité inter-annuelle domine la variabilité saisonnière (-2 à 1 Sv) entre le bassin algérien et le bassin nord, corrélée à la formation de l'WMDW. L'analyse de chaque transport spécifique de masses d'eau a montré que cette variabilité marquée est d'abord déterminée par les transports de masses d'eau intermédiaires et profondes. De même, la variabilité inter-annuelle des transports AW et MAW dans la partie centrale de la Méditerranée occidentale suggère un certain couplage entre les masses d'eau profondes, intermédiaires et de surface, même à travers la mer des Baléares, moins profonde

    Towards a realistic climate modelling of the Mediterranean Sea over the last 50 years: method and result overview

    Get PDF
    Póster presentado en la General Assembly 2011 de la European Geosciences Union (EGU), celebrada del 3 al 8 de abril de 2011 en Viena (Austria)The Mediterranean Sea is known to show high interannual variability in terms of air-sea fluxes, surface circulation and deep water formation. It also experiences decadal variability as proved by the Eastern Mediterranean Transient event (EMT) in the 90s and the recent Western Mediterranean Transition (WMT) in the 2000s. The existence of long-term trends in the deep layers has also been reported. Therefore, simulating and understanding the evolution of the Mediterranean Sea over the last decades is considered as quite a challenging task for the ocean and climate modelling community. To tackle this issue, we set up a high-resolution, physically and temporally consistent dataset for the forcing of long-term Mediterranean Sea simulations. This dataset called ARPERA covers the period 1958-2008 at a 50 km horizontal resolution. It is based on a dynamical downscaling of ECMWF atmospheric products (reanalysis and analysis) using the ARPEGE Regional Climate Model and the spectral nudging technique: model spatial scales larger than 250 km are forced to follow the reanalysis whereas the small scales (250 - 50 km) are free to develop. This dynamical technique is often called a “poor-man regional reanalysis”. We first analyse the sea wind field and air-sea fluxes of ARPERA, showing a good agreement with independent dataset and an added-value compared to state-of-the-art reanalysis (Herrmann and Somot, 2008; Aznar et al., 2010; Josey et al. 2010). Secondly, we used the ARPERA dataset to force daily a regional ocean model (NEMOMED8, 10 km, SST relaxation, no SSS relaxation) over the 1960-2008 period starting from initial conditions representative of the beginning of the 60s. In addition to the interannual air-sea fluxes, we applied interannual variability for the river runoff fluxes, the Black Sea freshwater inputs and the near-Atlantic characteristics. After a validation of the long-term stability and interannual variability of this hindcast simulation (surface circulation, sea level, SST, SSS, heat content, salt content, deep water formation, Gibraltar transports), we show that it is able to reproduce the EMT in the 90s (Beuvier et al., 2010) and the WMT in Winter 2004-05 (Herrmann et al., 2010). Next steps towards a more realistic representation of the long-term variability of the Mediterranean Sea are: - an increase of the horizontal resolution of the forcing (10 km) - a better description of the near-Atlantic influence (in particular for the sea level variability) - rivers and Black Sea data for the recent years - the use of a coupled atmosphere-land-river-ocean regional climate model instead of a forced ocean regional model - the implementation of in-situ and satellite data-assimilation - the use of an improved version of the regional ocean modelPeer Reviewe

    Eddy properties in the Western Mediterranean Sea from satellite altimetry and a numerical simulation

    No full text
    International audienceThree different eddy detection and tracking methods are applied to the outputs of a high-resolution simulation in the Western Mediterranean Sea in order to extract mesoscale eddy characteristics. The results are compared with the same eddy statistics derived from satellite altimetry maps over the same period. Eddy radii are around 30 km in altimetry maps whereas, in the model, they are around 20 km. This is probably due to the inability of altimetry maps to resolve the smaller mesoscale in the region. About 30 eddies are detected per day in the basin with a very heterogeneous spatial distribution and relatively short lifespans (median life around 13 days). Unlike other areas of the open ocean, they do not have a preferred direction of propagation but appear to be advected by mean currents. The number of detected eddies seems to present an annual cycle when separated according to their lifespan. With the numerical simulation, we show that anticyclones extend deeper in the water column and have a more conic shape than cyclones
    corecore