48 research outputs found

    Case mix, outcomes and comparison of risk prediction models for admissions to adult, general and specialist critical care units for head injury: a secondary analysis of the ICNARC Case Mix Programme Database

    Get PDF
    INTRODUCTION: This report describes the case mix and outcome (mortality, intensive care unit (ICU) and hospital length of stay) for admissions to ICU for head injury and evaluates the predictive ability of five risk adjustment models. METHODS: A secondary analysis was conducted of data from the Intensive Care National Audit and Research Centre (ICNARC) Case Mix Programme, a high quality clinical database, of 374,594 admissions to 171 adult critical care units across England, Wales and Northern Ireland from 1995 to 2005. The discrimination and calibration of five risk prediction models, SAPS II, MPM II, APACHE II and III and the ICNARC model plus raw Glasgow Coma Score (GCS) were compared. RESULTS: There were 11,021 admissions following traumatic brain injury identified (3% of all database admissions). Mortality in ICU was 23.5% and in-hospital was 33.5%. Median ICU and hospital lengths of stay were 3.2 and 24 days, respectively, for survivors and 1.6 and 3 days, respectively, for non-survivors. The ICNARC model, SAPS II and MPM II discriminated best between survivors and non-survivors and were better calibrated than raw GCS, APACHE II and III in 5,393 patients eligible for all models. CONCLUSION: Traumatic brain injury requiring intensive care has a high mortality rate. Non-survivors have a short length of ICU and hospital stay. APACHE II and III have poorer calibration and discrimination than SAPS II, MPM II and the ICNARC model in traumatic brain injury; however, no model had perfect calibration

    A block to pre-prepared movement in gait freezing, relieved by pedunculopontine nucleus stimulation

    Get PDF
    Gait freezing and postural instability are disabling features of Parkinsonian disorders, treatable with pedunculopontine nucleus stimulation. Both features are considered deficits of proximal and axial musculature, innervated predominantly by reticulospinal pathways and tend to manifest when gait and posture require adjustment. Adjustments to gait and posture are amenable to pre-preparation and rapid triggered release. Experimentally, such accelerated release can be elicited by loud auditory stimuli—a phenomenon known as ‘StartReact’. We observed StartReact in healthy and Parkinsonian controls. However, StartReact was absent in Parkinsonian patients with severe gait freezing and postural instability. Pedunculopontine nucleus stimulation restored StartReact proximally and proximal reaction times to loud stimuli correlated with gait and postural disturbance. These findings suggest a relative block to triggered, pre-prepared movement in gait freezing and postural instability, relieved by pedunculopontine nucleus stimulation

    Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism

    Get PDF
    The pedunculopontine nucleus, a component of the reticular formation, is topographically organized in animal models and implicated in locomotor control. In Parkinson's disease, pedunculopontine nucleus stimulation is an emerging treatment for gait freezing. Local field potentials recorded from pedunculopontine nucleus electrodes in such patients have demonstrated oscillations in the alpha and beta frequency bands, reactive to self-paced movement. Whether these oscillations are topographically organized or relevant to locomotion is unknown. Here, we recorded local field potentials from the pedunculopontine nucleus in parkinsonian patients during rest and unconstrained walking. Relative gait speed was assessed with trunk accelerometry. Peaks of alpha power were present at rest and during gait, when they correlated with gait speed. Gait freezing was associated with attenuation of alpha activity. Beta peaks were less consistently observed across rest and gait, and did not correlate with gait speed. Alpha power was maximal in the caudal pedunculopontine nucleus region and beta power was maximal rostrally. These results indicate a topographic distribution of neuronal activity in the pedunculopontine nucleus region and concur with animal data suggesting that the caudal subregion has particular relevance to gait. Alpha synchronization, proposed to suppress ‘task irrelevant’ distraction, has previously been demonstrated to correlate with performance of cognitive tasks. Here, we demonstrate a correlation between alpha oscillations and improved gait performance. The results raise the possibility that stimulation of caudal and rostral pedunculopontine nucleus regions may differ in their clinical effects

    The pedunculopontine region and breathing in Parkinson’s disease

    Get PDF
    Objective. Respiratory abnormalities such as upper airway obstruction are common in Parkinson's disease (PD) and are an important cause of mortality and morbidity. We tested the effect of pedunculopontine region (PPNr) stimulation on respiratory maneuvers in human participants with PD, and separately recorded PPNr neural activity reflected in the local field potential (LFP) during these maneuvers. Methods. Nine patients with deep brain stimulation electrodes in PPNr, and seven in globus pallidus interna (GPi) were studied during trials of maximal inspiration followed by forced expiration with stimulation OFF and ON. Local field potentials (LFPs) were recorded in the unstimulated condition. Results. PEFR increased from 6.41 ± 0.63 L/sec in the OFF stimulation state to 7.5 L ± 0.65 L/sec in the ON stimulation state (z = −2.666, df = 8, P = 0.024). Percentage improvement in PEFR was strongly correlated with proximity of the stimulated electrode contact to the mesencephalic locomotor region in the rostral PPN (r = 0.814, n = 9, P = 0.008). Mean PPNr LFP power increased within the alpha band (7–11 Hz) during forced respiratory maneuvers (1.63 ± 0.16 μV2/Hz) compared to resting breathing (0.77 ± 0.16 μV2/Hz; z = −2.197, df = 6, P = 0.028). No changes in alpha activity or spirometric indices were seen with GPi recording or stimulation. Percentage improvement in PEFR was strongly positively correlated with increase in alpha power (r = 0.653, n = 14 (7 PPNr patients recorded bilaterally), P = 0.0096). Interpretation. PPNr stimulation in PD improves indices of upper airway function. Increased alpha‐band activity is seen within the PPNr during forced respiratory maneuvers. Our findings suggest a link between the PPNr and respiratory performance in PD

    A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation

    Get PDF
    Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson’s disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients’ usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait freezing but not background deficits in step length. Bilateral stimulation was more effective than unilateral

    MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain

    Get PDF
    Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain

    Defining the Critical Hurdles in Cancer Immunotherapy

    Get PDF
    ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer

    Defining the critical hurdles in cancer immunotherapy

    Get PDF
    Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer
    corecore