76 research outputs found

    Evolutionary genetics of canine respiratory coronavirus and recent introduction into Swedish dogs

    Get PDF
    Canine respiratory coronavirus (CRCoV) has been identified as a causative agent of canine infectious respiratory disease, an upper respiratory infection affecting dogs. The epidemiology is currently opaque, with an unclear understanding of global prevalence, pathology, and genetic characteristics. In this study, Swedish privatelyowned dogs with characteristic signs of canine infectious respiratory disease (n = 88) were screened for CRCoV and 13 positive samples (14.7%, 8.4–23.7% [95% confidence interval (CI)]) were further sequenced. Sequenced Swedish CRCoV isolates were highly similar despite being isolated from dogs living in geographically distant locations and sampled across 3 years (2013–2015). This is due to a single introduction into Swedish dogs in approximately 2010, as inferred by time structured phylogeny. Unlike other CRCoVs, there was no evidence of recombination in Swedish CRCoV isolates, further supporting a single introduction. Finally, there were low levels of polymorphisms, in the spike genes. Overall, we demonstrate that there is little diversity of CRCoV which is endemic in Swedish dogs

    Anthracene-based thiol-ene networks with thermo-degradable and photo-reversible properties

    Get PDF
    Reversible networks based on an alkenefunctionalized dimer of 9-anthracenemethanol were synthesized by photoinitiated radical thiol ene polyaddition, using either a poly(dimethylsiloxane-co-propylmercaptomethylsiloxane) or a novel aliphatic trithiol synthesized from 1,2,4trivinylcyclohexane in a simple two-step procedure. The obtained networks were analyzed using differential scanning calorimetry, dynamic mechanical analysis, polarization microscopy, X-ray diffraction, and (photo)rheology. The two types of networks showed weak endothermic transitions between 50 and 60 degrees C, which proved to originate either from melting of a crystalline anthracene-dimer phase (trithiol network) or from a liquid crystalline phase (PDMS network) based on X-ray diffraction and polarization microscopy. Using rheology, both types of networks were shown to cleanly decompose into multifunctional anthracene monomers at temperatures above 180 degrees C. Irradiation of these anthracene monomers resulted in the formation of networks having similar physical properties as the original materials

    Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection

    Get PDF
    Abstract Background A small group of F-box proteins consisting of a conserved F-box domain linked to a domain homologous to the glycan-binding protein has been identified within the genome of Arabidopsis thaliana. Previously, the so-called F-box-Nictaba protein, encoded by the gene At2g02360, was shown to be a functional lectin which binds N-acetyllactosamine structures. Here, we present a detailed qRT-PCR expression analysis of F-box-Nictaba in Arabidopsis plants upon different stresses and hormone treatments. Results Expression of the F-box-Nictaba gene was enhanced after plant treatment with salicylic acid and after plant infection with the virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). β-glucuronidase histochemical staining of transgenic Arabidopsis plants displayed preferential activity of the At2g02360 promoter in trichomes present on young rosette leaves. qRT-PCR analyses confirmed high expression of F-box-Nictaba in leaf trichomes. A. thaliana plants overexpressing the gene showed less disease symptoms after Pst DC3000 infection with reduced bacterial colonization compared to infected wild type and F-box-Nictaba knock-out plants. Conclusions Our data show that the Arabidopsis F-box-Nictaba gene is a stress-inducible gene responsive to SA, bacterial infection and heat stress, and is involved in salicylic acid related plant defense responses. This knowledge enriched our understanding of the physiological importance of F-box-Nictaba, and can be used to create plants with better performance in changing environmental conditions

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe

    Stress relaxation in thermosets by photoreversible crosslink exchange

    No full text

    Synthesis of new resins for the preparation of UV-cure shape-memory coatings

    No full text
    corecore