17 research outputs found

    Gaia GraL: Gaia DR2 Gravitational Lens Systems. VII. XMM-Newton Observations of Lensed Quasars

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.3847/1538-4357/ac4476We present XMM-Newton X-ray observations of nine confirmed lensed quasars at 1 ≲ z ≲ 3 identified by the Gaia Gravitational Lens program. Eight systems are strongly detected, with 0.3-8.0 keV fluxes F 0.3-8.0 ≳ 5 ×10-14 erg cm-2 s-1. Modeling the X-ray spectra with an absorbed power law, we derive power-law photon indices and 2-10 keV luminosities for the eight detected quasars. In addition to presenting sample properties for larger quasar population studies and for use in planning for future caustic-crossing events, we also identify three quasars of interest: a quasar that shows evidence of flux variability from previous ROSAT observations, the most closely separated individual lensed sources resolved by XMM-Newton, and one of the X-ray brightest quasars known at z > 3. These sources represent the tip of the discoveries that will be enabled by SRG/eROSITA.Peer reviewe

    Gaia GraL: Gaia DR2 gravitational lens systems – VIII. A radio census of lensed systems

    Get PDF
    © 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We present radio observations of 24 confirmed and candidate strongly lensed quasars identified by the Gaia Gravitational Lenses working group. We detect radio emission from eight systems in 5.5 and 9 GHz observations with the Australia Telescope Compact Array (ATCA), and 12 systems in 6 GHz observations with the Karl G. Jansky Very Large Array (VLA). The resolution of our ATCA observations is insufficient to resolve the radio emission into multiple lensed images, but we do detect multiple images from 11 VLA targets. We have analysed these systems using our observations in conjunction with existing optical measurements, including measuring offsets between the radio and optical positions for each image and building updated lens models. These observations significantly expand the existing sample of lensed radio quasars, suggest that most lensed systems are detectable at radio wavelengths with targeted observations, and demonstrate the feasibility of population studies with high-resolution radio imaging.Peer reviewe

    Gaia GraL: Gaia DR2 Gravitational Lens Systems. VIII. A radio census of lensed systems

    Full text link
    We present radio observations of 24 confirmed and candidate strongly lensed quasars identified by the Gaia Gravitational Lenses (GraL) working group. We detect radio emission from 8 systems in 5.5 and 9 GHz observations with the Australia Telescope Compact Array (ATCA), and 12 systems in 6 GHz observations with the Karl G. Jansky Very Large Array (VLA). The resolution of our ATCA observations is insufficient to resolve the radio emission into multiple lensed images, but we do detect multiple images from 11 VLA targets. We have analysed these systems using our observations in conjunction with existing optical measurements, including measuring offsets between the radio and optical positions, for each image and building updated lens models. These observations significantly expand the existing sample of lensed radio quasars, suggest that most lensed systems are detectable at radio wavelengths with targeted observations, and demonstrate the feasibility of population studies with high resolution radio imaging

    Gaia GraL: Gaia DR2 Gravitational Lens Systems. VII. XMM-Newton Observations of Lensed Quasars

    Get PDF
    Abstract We present XMM-Newton X-ray observations of nine confirmed lensed quasars at 1 ≲ z ≲ 3 identified by the Gaia Gravitational Lens program. Eight systems are strongly detected, with 0.3–8.0 keV fluxes F 0.3−8.0 ≳ 5 ×10−14 erg cm−2 s−1. Modeling the X-ray spectra with an absorbed power law, we derive power-law photon indices and 2–10 keV luminosities for the eight detected quasars. In addition to presenting sample properties for larger quasar population studies and for use in planning for future caustic-crossing events, we also identify three quasars of interest: a quasar that shows evidence of flux variability from previous ROSAT observations, the most closely separated individual lensed sources resolved by XMM-Newton, and one of the X-ray brightest quasars known at z &gt; 3. These sources represent the tip of the discoveries that will be enabled by SRG/eROSITA.</jats:p

    Gaia GraL: Gaia DR2 Gravitational Lens Systems. IV. Keck/LRIS spectroscopic confirmation of GRAL113100-441959 and model prediction of time-delays

    Full text link
    We report the spectroscopic confirmation and modeling of the quadruply imaged quasar GRAL113100-441959, the first gravitational lens (GL) to be discovered mainly from astrometric considerations. Follow-up spectra obtained with Keck/LRIS reveal the lensing nature of this quadruply-imaged quasar with redshift zs=1.090±0.002z_s = 1.090 \pm 0.002, but show no evidence of the central lens galaxy. Using the image positions and GG-band flux ratios provided by Gaia Data Release 2 as constraints, we model the system with a singular power-law elliptical mass distribution (SPEMD) plus external shear, to different levels of complexity. We show that relaxing the isothermal constraint of the SPEMD is not statistically significant, and thus we simplify the SPEMD to a singular isothermal ellipsoid to estimate the Einstein radius of the main lens galaxy \theta_{\text{E}} = 0.\!\!^{\prime\prime}851, the intensity and position angle of the external shear (\gamma,\theta_{\gamma}) = (0.044,11.\!\!^{\circ}5), and we predict the lensing galaxy position to be (x_{\text{gal}},y_{\text{gal}}) = (-0.\!\!^{\prime\prime}424,-0.\!\!^{\prime\prime}744) with respect to image A. We provide time delay predictions for pairs of images, assuming a plausible range of lens redshift values zlz_l between 0.50.5 and 0.90.9. We finally examine the impact on time delays of the so-called Source Position Transformation, a family of degeneracies existing between different lens density profiles that reproduce most of the lensing observables equally well. We show that this effect contributes significantly to the time delay error budget and cannot be ignored during the modeling. This has implications for robust cosmography applications of lensed systems. GRAL113100-441959 is the first in a series of seven new spectroscopically confirmed GLs discovered from Gaia Data Release 2

    GraL spectroscopic identification of multiply imaged quasars

    No full text
    International audienceGravitational lensing is proven to be one of the most efficient tools for studying the Universe. The spectral confirmation of such sources requires extensive calibration. This paper discusses the spectral extraction technique for the case of multiple source spectra being very near each other. Using the masking technique, we first detect high Signal-to-Noise (S/N) peaks in the CCD spectral image corresponding to the location of the source spectra. This technique computes the cumulative signal using a weighted sum, yielding a reliable approximation for the total counts contributed by each source spectrum. We then proceed with the subtraction of the contaminating spectra. Applying this method, we confirm the nature of 11 lensed quasar candidates

    Gaia GraL: Gaia DR2 Gravitational Lens Systems. VII. XMM-Newton Observations of Lensed Quasars

    No full text
    We present XMM-Newton X-ray observations of nine confirmed lensed quasars at 1z31 \lesssim z \lesssim 3 identified by the Gaia Gravitational Lens program. Eight systems are strongly detected, with 0.3--8.0 keV fluxes F0.38.05×1014 erg cm2 s1F_{0.3-8.0} \gtrsim 5 \times 10^{-14}\ {\rm erg}\ {\rm cm}^{-2}\ {\rm s}^{-1}. Modeling the X-ray spectra with an absorbed power law, we derive power law photon indices and 2--10 keV luminosities for the eight detected quasars. In addition to presenting sample properties for larger quasar population studies and for use in planning for future caustic crossing events, we also identify three quasars of interest: a quasar that shows evidence of flux variability from previous ROSAT observations, the most closely-separated individual lensed sources resolved by XMM-Newton, and one of the X-ray brightest quasars known at z>3z>3. These sources represent the tip of discovery that will be enabled by SRG/eROSITA
    corecore