287 research outputs found

    Assessing contaminated sediments in the context of multiple stressors

    Full text link
    Sediments have a major role in ecosystem functioning but can also act as physical or chemical stressors. Anthropogenic activities may change the chemical constituency of sediments and the rate, frequency, and extent of sediment transport, deposition, and resuspension. The importance of sediments as stressors will depend on site ecosystem attributes and the magnitude and preponderance of co-occurring stressors. Contaminants are usually of greater ecological consequence in human-modified, depositional environments, where other anthropogenic stressors often co-occur. Risk assessments and restoration strategies should better consider the role of chemical contamination in the context of multiple stressors. There have been numerous advances in the temporal and spatial characterization of stressor exposures and quantification of biological responses. Contaminated sediments causing biological impairment tend to be patchy, whereas more pervasive anthropogenic stressors, such as alterations to habitat and flow, physical disturbance, and nutrient addition, may drive large-scale ecosystem responses. A systematic assessment of relevant ecosystem attributes and reference conditions can assist in understanding the importance of sediments in the context of other stressors. Experimental manipulations then allow for the controlled study of dominant stressors and the establishment of causal links. This approach will result in more effective management of watersheds and waterways. Environ. Toxicol. Chem. 2010;29:2625–2643. © 2010 SETACPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78293/1/332_ftp.pd

    Monimuotoisuuden vaikutukset lÀmpötilaekolokeron ajalliseen vaihteluun lintuyhteisöissÀ ilmastonmuutoksessa

    Get PDF
    Climate change alters ecological communities by affecting individual species and interactions between species. However, the impacts of climate change may be buffered by community diversity: diverse communities may be more resistant to climate-driven perturbations than simple communities. Here, we assess how diversity influences long-term thermal niche variation in communities under climate change. We use 50-year continental-scale data on bird communities during breeding and non-breeding seasons to quantify the communities’ thermal variability. Thermal variability is measured as the temporal change in the community’s average thermal niche and it indicates community’s response to climate change. Then, we study how the thermal variability varies as a function of taxonomic, functional, and evolutionary diversity using linear models. We find that communities with low thermal niche variation have higher functional diversity, with this pattern being measurable in the non-breeding but not in the breeding season. Given the expected increase in seasonal variation in the future climate, the differences in bird communities’ thermal variability between breeding and non-breeding seasons may grow wider. Importantly, our results suggest that functionally diverse wildlife communities can mitigate effects of climate change by hindering changes in thermal niche variability, which underscores the importance of addressing the climate and biodiversity crises together.Peer reviewe

    Exploring narcissism and human- and animal-centered empathy in pet owners

    Get PDF
    Having empathy for others is typically generalized to having empathy for animals. However, empathy for humans and for animals are only weakly correlated. Thus, some individuals may have low human-centered empathy but have high animal-centered empathy. Here, we explore whether pet owners who are high in narcissism display empathy towards animals despite their low human-centered empathy. We assessed pet owners’ (N = 259) three components of trait narcissism (Agentic Extraversion, Antagonism, and Narcissistic Neuroticism), human- and animal-centered empathy, attitudes towards animals, and their pet attachment. We found that Agentic Extraversion was unrelated to both human- and animal-centered empathy. We also found that Antagonism was related to less empathy for both humans and animals, as well as more negative attitudes towards animals. Lastly, we found that Narcissistic Neuroticism was unrelated to human-centered empathy and positively related to animal-centered empathy and attitudes towards animals. This research furthers our understanding of the relation between empathy towards humans and animals and provides insight into whether animal-assisted approaches may be useful for empathy training in those with narcissistic characteristics

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Disaster Risks Research and Assessment to Promote Risk Reduction and Management

    Get PDF
    Natural hazard events lead to disasters when the events interact with exposed and vulnerable physical and social systems. Despite significant progress in scientific understanding of physical phenomena leading to natural hazards as well as of vulnerability and exposure, disaster losses due to natural events do not show a tendency to decrease. This tendency is associated with many factors including increase in populations and assets at risk as well as in frequency and/or magnitude of natural events, especially those related to hydro-meteorological and climatic hazards. But essentially disaster losses increase because some of the elements of the multidimensional dynamic disaster risk system are not accounted for risk assessments. A comprehensive integrated system analysis and periodic assessment of disaster risks at any scale, from local to global, based on knowledge and data/information accumulated so far, are essential scientific tools that can assist in recognition and reduction of disaster risks. This paper reviews and synthesizes the knowledge of natural hazards, vulnerabilities, and disaster risks and aims to highlight potential contributions of science to disaster risk reduction (DRR) in order to provide policy-makers with the knowledge necessary to assist disaster risk mitigation and disaster risk management (DRM)

    Invasion Expansion: Time since introduction best predicts global ranges of marine invaders.

    Get PDF
    Strategies for managing biological invasions are often based on the premise that characteristics of invading species and the invaded environment are key predictors of the invader's distribution. Yet, for either biological traits or environmental characteristics to explain distribution, adequate time must have elapsed for species to spread to all potential habitats. We compiled and analyzed a database of natural history and ecological traits of 138 coastal marine invertebrate species, the environmental conditions at sites to which they have been introduced, and their date of first introduction. We found that time since introduction explained the largest fraction (20%) of the variability in non-native range size, while traits of the species and environmental variables had significant, but minimal, influence on non-native range size. The positive relationship between time since introduction and range size indicates that non-native marine invertebrate species are not at equilibrium and are still spreading, posing a major challenge for management of coastal ecosystems

    Wintering bird communities are tracking climate change faster than breeding communities

    Get PDF
    Global climate change is driving species' distributions towards the poles and mountain tops during both non-breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate-driven community shifts has not been thoroughly investigated at large spatial scales. We compared the rates of change in the community composition during both winter (non-breeding season) and summer (breeding) and their relation to temperature changes. Based on continental-scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980-2016. CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site-faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long-term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons. Our results were broadly consistent across continents, suggesting some climate-driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate-driven impacts during the less-studied non-breeding season.Peer reviewe

    Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda

    Get PDF
    Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions
    • 

    corecore