1,539 research outputs found

    Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    Get PDF
    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics

    Occurrence and population densities of yeast species in a fresh-water lake

    Full text link
    Quantitative studies of yeasts present in surface and deep water samples from a fresh water body (Douglas Lake, Michigan) revealed 12 species ( Candida parapsilosis, C. pulcherrima, Cryptococcus albidus, Cr. diffluens, Cr. gastricus, Cr. laurentii, Rhodotorula glutinis, R. pilimanae, R. rubra, Trichosporon cutaneum, Debaryomyces sp., “black yeasts”). In two regions of surface sampling the population densities averaged 39.6 and 5.5 cells per 100 ml respectively, whereas the average deep water count was 40.3 cells per 100 ml. Yeasts of the genus Rhodotorula predominated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41778/1/10482_2005_Article_BF02046074.pd

    Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli

    Get PDF
    Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens

    Studies of Breakdown in a Pressurized RF Cavity

    Get PDF
    Microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 805 MHz RF cavity experiments [1] have been used to investigate the mechanism of RF breakdown [2]. The images show evidence for melting and boiling in small regions of ∼10 micron diameter on tungsten, molybdenum, and beryllium electrode surfaces. In these experiments, the dense hydrogen gas in the cavity prevents electrons or ions from being accelerated to high enough energy to participate in the breakdown process so that the only important variables are the fields and the metallic surfaces. The distributions of breakdown remnants on the electrode surfaces are compared to the maximum surface gradient E predicted by an ANSYS model of the cavity. The local surface density of spark remnants, proportional to the probability of breakdown, shows a strong exponential dependence on the maximum gradient, which is reminiscent of Fowler-Nordheim behavior of electron emission from a cold cathode. New simulation results have shown good agreement with the breakdown behaviour of the hydrogen gas in the Paschen region and have suggested improved behaviour with the addition of trace dopants such as SF6 [3]. Present efforts are to extend the computer model to include electrode breakdown phenomena and to use scanning tunnelling microscopy to search for work function differences between the conditioned and unconditioned parts of the electrodes

    Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus

    Get PDF
    Diverse animals exhibit left–right asymmetry in development. However, no example of dimorphism for the left–right polarity of development (whole-body enantiomorphy) is known to persist within natural populations. In snails, whole-body enantiomorphs have repeatedly evolved as separate species. Within populations, however, snails are not expected to exhibit enantiomorphy, because of selection against the less common morph resulting from mating disadvantage. Here we present a unique example of evolutionarily stable whole-body enantiomorphy in snails. Our molecular phylogeny of South-east Asian tree snails in the genus Amphidromus indicates that enantiomorphy has likely persisted as the ancestral state over a million generations. Enantiomorphs have continuously coexisted in every population surveyed spanning a period of 10 years. Our results indicate that whole-body enantiomorphy is maintained within populations opposing the rule of directional asymmetry in animals. This study implicates the need for explicit approaches to disclosure of a maintenance mechanism and conservation of the genus

    A joint study of early and late spectral distortions of the cosmic microwave background and of the millimetric foreground

    Get PDF
    We have compared the absolute temperature data of the CMB spectrum with models for CMB spectra distorted by a single or two heating processes at different cosmic times. The constraints on the fractional energy injected in the radiation field, DE/E, are mainly provided by the FIRAS instrument aboard the COBE satellite. Under the hypothesis that two heating processes have occurred at different epochs, the limits on DE/E are relaxed by a factor 2 both for the earlier and the later process with respect to the case in which a single energy injection in the thermal history of the universe is considered. In general, the constraints on DE/E are weaker for early processes than for relatively late processes, because of the wavelength coverage of FIRAS data. We considered also the FIRAS calibration as revised by Battistelli et al. 2000, that, in the case of the favourite calibrator emissivity law proposed by the authors, implies significant deviations from a planckian spectrum. An astrophysical explanation of this, although intriguing, seems difficult, both in terms of CMB spectral distortions and in terms of a relevant millimetric foreground. Future precise measurements at longer wavelengths as well as current and future CMB anisotropy space missions will provide independent, direct or indirect, cross checks.Comment: 24 pages, 8 figures; includes improvements in response to refere report. Accepted for publication on MNRA

    Study protocol: developing a decision system for inclusive housing: applying a systematic, mixed-method quasi-experimental design

    Get PDF
    Background Identifying the housing preferences of people with complex disabilities is a much needed, but under-developed area of practice and scholarship. Despite the recognition that housing is a social determinant of health and quality of life, there is an absence of empirical methodologies that can practically and systematically involve consumers in this complex service delivery and housing design market. A rigorous process for making effective and consistent development decisions is needed to ensure resources are used effectively and the needs of consumers with complex disability are properly met. Methods/Design This 3-year project aims to identify how the public and private housing market in Australia can better respond to the needs of people with complex disabilities whilst simultaneously achieving key corporate objectives. First, using the Customer Relationship Management framework, qualitative (Nominal Group Technique) and quantitative (Discrete Choice Experiment) methods will be used to quantify the housing preferences of consumers and their carers. A systematic mixed-method, quasi-experimental design will then be used to quantify the development priorities of other key stakeholders (e.g., architects, developers, Government housing services etc.) in relation to inclusive housing for people with complex disabilities. Stakeholders randomly assigned to Group 1 (experimental group) will participate in a series of focus groups employing Analytical Hierarchical Process (AHP) methodology. Stakeholders randomly assigned to Group 2 (control group) will participate in focus groups employing existing decision making processes to inclusive housing development (e.g., Risk, Opportunity, Cost, Benefit considerations). Using comparative stakeholder analysis, this research design will enable the AHP methodology (a proposed tool to guide inclusive housing development decisions) to be tested. Discussion It is anticipated that the findings of this study will enable stakeholders to incorporate consumer housing preferences into commercial decisions. Housing designers and developers will benefit from the creation of a parsimonious set of consumer-led housing preferences by which to make informed investments in future housing and contribute to future housing policy. The research design has not been applied in the Australian research context or elsewhere, and will provide a much needed blueprint for market investment to develop viable, consumer directed inclusive housing options for people with complex disability

    Social presence and dishonesty in retail

    Get PDF
    Self-service checkouts (SCOs) in retail can benefit consumers and retailers, providing control and autonomy to shoppers independent from staff, together with reduced queuing times. Recent research indicates that the absence of staff may provide the opportunity for consumers to behave dishonestly, consistent with a perceived lack of social presence. This study examined whether a social presence in the form of various instantiations of embodied, visual, humanlike SCO interface agents had an effect on opportunistic behaviour. Using a simulated SCO scenario, participants experienced various dilemmas in which they could financially benefit themselves undeservedly. We hypothesised that a humanlike social presence integrated within the checkout screen would receive more attention and result in fewer instances of dishonesty compared to a less humanlike agent. This was partially supported by the results. The findings contribute to the theoretical framework in social presence research. We concluded that companies adopting self-service technology may consider the implementation of social presence in technology applications to support ethical consumer behaviour, but that more research is required to explore the mixed findings in the current study.<br/
    corecore