907 research outputs found

    Mesoscopic transport beyond linear response

    Full text link
    We present an approach to steady-state mesoscopic transport based on the maximum entropy principle formulation of nonequilibrium statistical mechanics. Our approach is not limited to the linear response regime. We show that this approach yields the quantization observed in the integer quantum Hall effect at large currents, which until now has been unexplained. We also predict new behaviors of non-local resistances at large currents in the presence of dirty contacts.Comment: 14 pages plus one figure (with an insert) (post-script codes appended), RevTeX 3.0, UCF-CM-93-004 (Revised

    Resonant tunneling through ultrasmall quantum dots: zero-bias anomalies, magnetic field dependence, and boson-assisted transport

    Full text link
    We study resonant tunneling through a single-level quantum dot in the presence of strong Coulomb repulsion beyond the perturbative regime. The level is either spin-degenerate or can be split by a magnetic field. We, furthermore, discuss the influence of a bosonic environment. Using a real-time diagrammatic formulation we calculate transition rates, the spectral density and the nonlinear IVI-V characteristic. The spectral density shows a multiplet of Kondo peaks split by the transport voltage and the boson frequencies, and shifted by the magnetic field. This leads to zero-bias anomalies in the differential conductance, which agree well with recent experimental results for the electron transport through single-charge traps. Furthermore, we predict that the sign of the zero-bias anomaly depends on the level position relative to the Fermi level of the leads.Comment: 27 pages, latex, 21 figures, submitted to Phys. Rev.

    Economics of preceding crops and nitrogen application rates for canola and barley production in western Canada

    Get PDF
    Non-Peer ReviewedThe objective of this study was to evaluate the economic effects of a range of legume and non-legume preceding crops and N rates on costs and net revenue (NR) of canola (Brassica napus L.), barley (Hordeum vulgare L.) and canola-barley rotation under various environmental conditions. Legumes such as field pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) as preceding crop generated higher net revenues for the following crops canola and barley than when wheat (Triticum aestivum L.) and canola were the preceding crops. Although faba bean (Vicia faba L.) grown as a green manure produced the highest annual net revenues for the following crops canola and barley, this contribution was not enough to compensate for the loss of income during the green manure production year. Therefore, growing faba bean as a green manure was not economical. Response of net revenue to N rates was mainly linear or quadratic, and N was optimal at 60 to 90 kg ha-1 at most sites. The results indicate that growing legumes for seed prior to canola can increase net revenues of canola and subsequent barley

    Reexamining nonstandard interaction effects on supernova neutrino flavor oscillations

    Get PDF
    Several extensions of the standard electroweak model allow new four-fermion interactions (nu_a nu_b * ff) with strength eps_ab*G_F, where (a,b) are flavor indices. We revisit their effects on flavor oscillations of massive (anti)neutrinos in supernovae, in order to achieve, in the region above the protoneutron star, an analytical treatment valid for generic values of the neutrino mixing angles (omega,phi,psi)=(theta_12,theta_13,theta_23). Assuming that eps_ab<<1, we find that the leading effects on the flavor transitions occurring at high (H) and low (L) density along the supernova matter profile can be simply embedded through the replacements phi-->phi+eps_H and omega-->omega+eps_L, respectively, where eps_H and eps_L are specific linear combinations of the eps_ab's. Similar replacements hold for eventual oscillations in the Earth matter. From a phenomenological point of view, the most relevant consequence is a possible uncontrolled bias (phi-->phi+eps_H) in the value of the mixing angle phi inferred by inversion of supernova neutrino data. Such a drawback, however, does not preclude the discrimination of the neutrino mass spectrum hierarchy (direct or inverse) through supernova neutrino oscillations.Comment: Text clarified, one figure added. To appear in PR

    Spin fluctuations in nearly magnetic metals from ab-initio dynamical spin susceptibility calculations:application to Pd and Cr95V5

    Full text link
    We describe our theoretical formalism and computational scheme for making ab-initio calculations of the dynamic paramagnetic spin susceptibilities of metals and alloys at finite temperatures. Its basis is Time-Dependent Density Functional Theory within an electronic multiple scattering, imaginary time Green function formalism. Results receive a natural interpretation in terms of overdamped oscillator systems making them suitable for incorporation into spin fluctuation theories. For illustration we apply our method to the nearly ferromagnetic metal Pd and the nearly antiferromagnetic chromium alloy Cr95V5. We compare and contrast the spin dynamics of these two metals and in each case identify those fluctuations with relaxation times much longer than typical electronic `hopping times'Comment: 21 pages, 9 figures. To appear in Physical Review B (July 2000

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Hadron yields and spectra in Au+Au collisions at the AGS

    Full text link
    Inclusive double differential multiplicities and rapidity density distributions of hadrons are presented for 10.8 A GeV/c Au+Au collisions as measured at the AGS by the E877 collaboration. The results indicate that large amounts of stopping and collective transverse flow effects are present. The data are also compared to the results from the lighter Si+Al system.Comment: 12 pages, latex, 10 figures, submitted to Nuclear Physics A (Quark Matter 1996 Proceedings

    Atmospheric Neutrino Oscillations and New Physics

    Get PDF
    We study the robustness of the determination of the neutrino masses and mixing from the analysis of atmospheric and K2K data under the presence of different forms of phenomenologically allowed new physics in the nu_mu--nu_tau sector. We focus on vector and tensor-like new physics interactions which allow us to treat, in a model independent way, effects due to the violation of the equivalence principle, violations of the Lorentz invariance both CPT conserving and CPT violating, non-universal couplings to a torsion field and non-standard neutrino interactions with matter. We perform a global analysis of the full atmospheric data from SKI together with long baseline K2K data in the presence of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together with sub-dominant effects due to these forms of new physics. We show that within the present degree of experimental precision, the extracted values of masses and mixing are robust under those effects and we derive the upper bounds on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include
    corecore