Agriculture et Agroalimentaire Canada

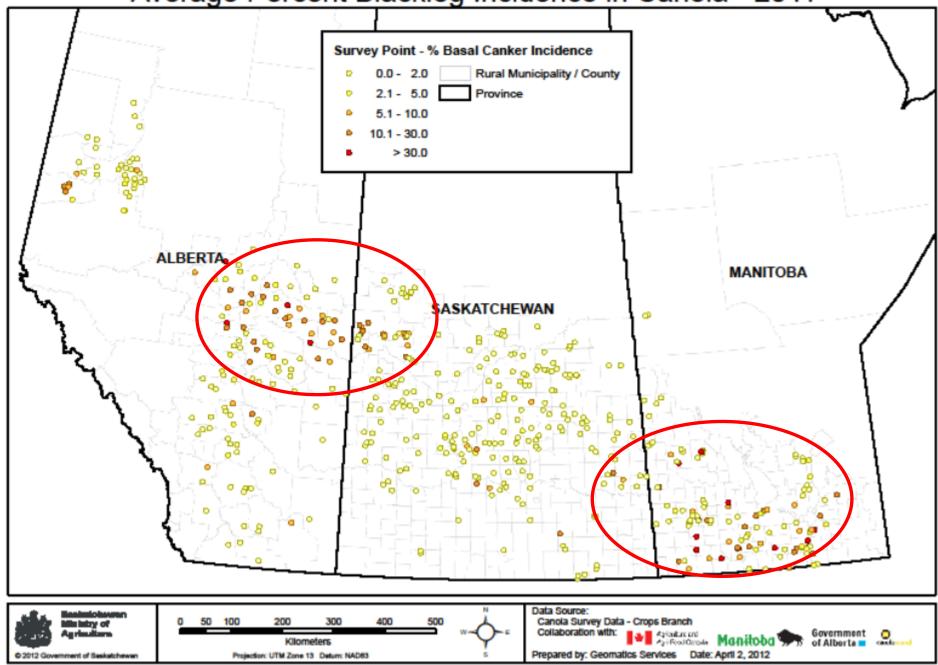
Managing blackleg of canola – potential new tools

Peng G¹, Fernando WGD², Kirkham CL¹, Lange R³,Kutcher HR⁴, McLaren DL¹, Johnson EN¹, Turkington TK¹

- ¹ AAFC, Saskatoon/Melfort/Scott, SK; Brandon, MB; Lacombe, AB
- ² Dept. Plant Sciences, Univ. of Manitoba
- ³ Alberta Innovates, Vegreville, AB

Agriculture and Agri-Food Canada

⁴ Dept. Plant Sciences, Univ. of Saskatchewan



Background

For many years, blackleg disease of canola was managed effectively with resistant cultivars in conjunction with 4-yr crop rotation

- Leptosphaeria maculans race structure has been changing, influenced by R genes used in canola cultivars and environmental conditions
- Crop rotation has been tightened in recent years in favor of canola production
- Blackleg disease is on the rise, more noticeable in some regions than others on the prairies

Average Percent Blackleg Incidence in Canola - 2011

Blackleg survey in Saskatchewan - 2012

Region	No. fields surveyed	% Fields with Blackleg	Avg. disease incidence (%)
NW	54	48	16.6
NE	45	27	8.1
WC	36	14	3.0
EC	61	34	5.0
SW	14	36	6.6
SE	43	30	20.2
Province	253	32	11.2

Data compiled by SK Ministry of Agriculture

What factors can influence the increase of blackleg disease?

- Pathogen population: –race structure. The type & frequency of Avirulent (Av)/avirulent (av) alleles
- Resistance genes in canola cultivars (specific & quantitative resistance genes)

Durgicieleseand/theirtichiogovhernmeaistancegen breakshowne(worstroasesceneri@)genes – The rate of reproduction would be higher under short crop rotations

I. LM race structure and dynamics

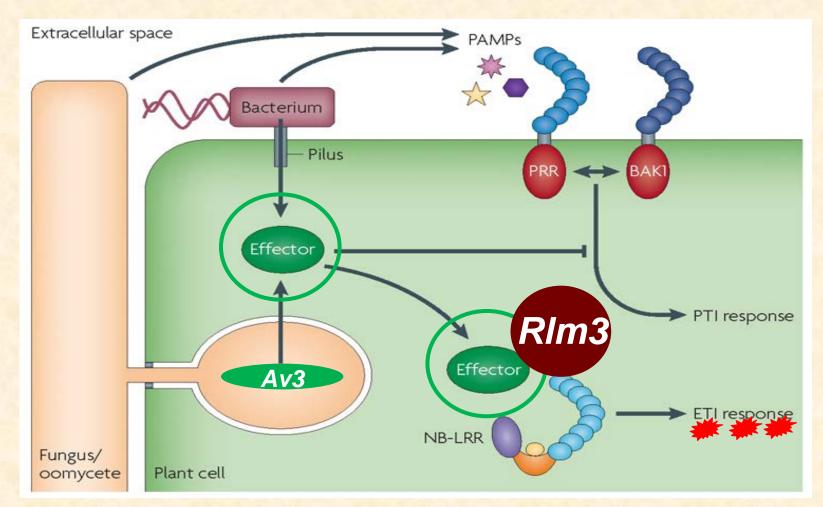
Pathogen-host interaction (seedling stage) Specific R gene L. maculans Av gene

RIm1	Av1
RIm2	Av2
Rlm3	Av3
RIm4	Av4
RIm5,6	Av5,6
Rlm7	Av4
RIm8	Av8
RIm9	Av9
Rlm10	Av10
LepR1	AvLep1
LepR2	AvLep2
LepR3	AvLep3
LepR4	AvLep4

LM-canola interaction

RIm3

AvLm3


RIm3

avLm3

Perception of pathogens by plants -effectors

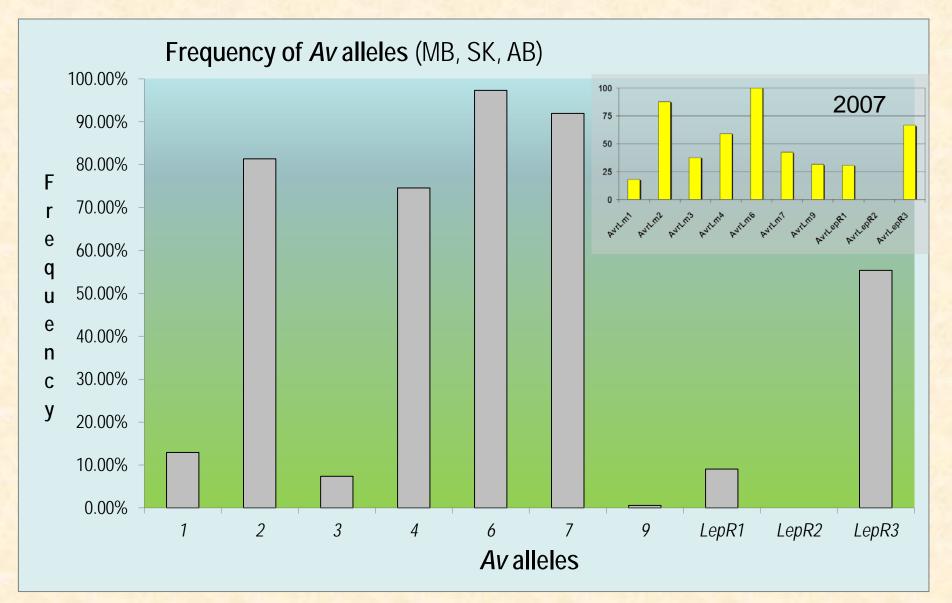
PAMPs: Pathogen-associated molecular patterns (extracellular) PTI: PAMP-triggered immunity Effector: Pathogen proteins in the host cytoplasm ETI. Effector-triggered immunity (intra-cellar)

Dodds & Rathjen (2010) Nature Rev. Gen., 11:539-548

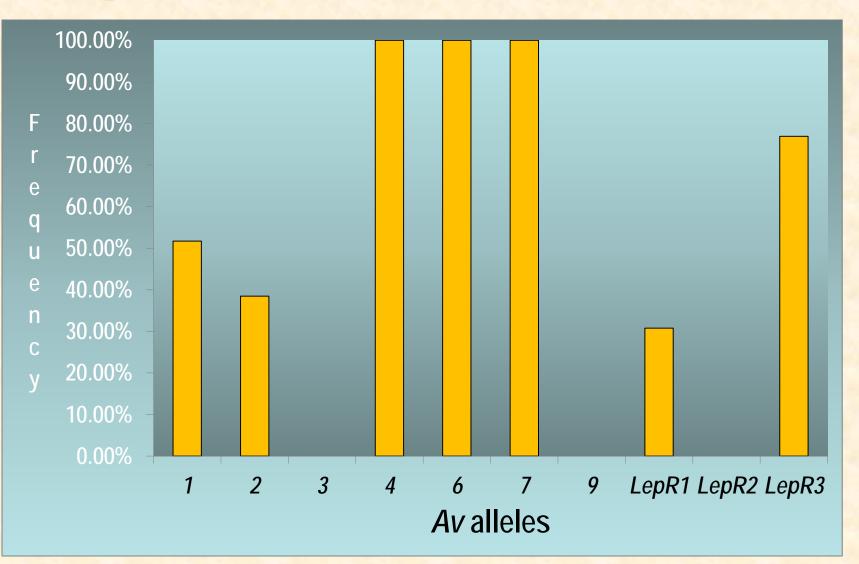
A set of *Brassica* lines for differentiating *Av* genes in *L. maculans*

Canola lines R-genes Canola lines R-genes

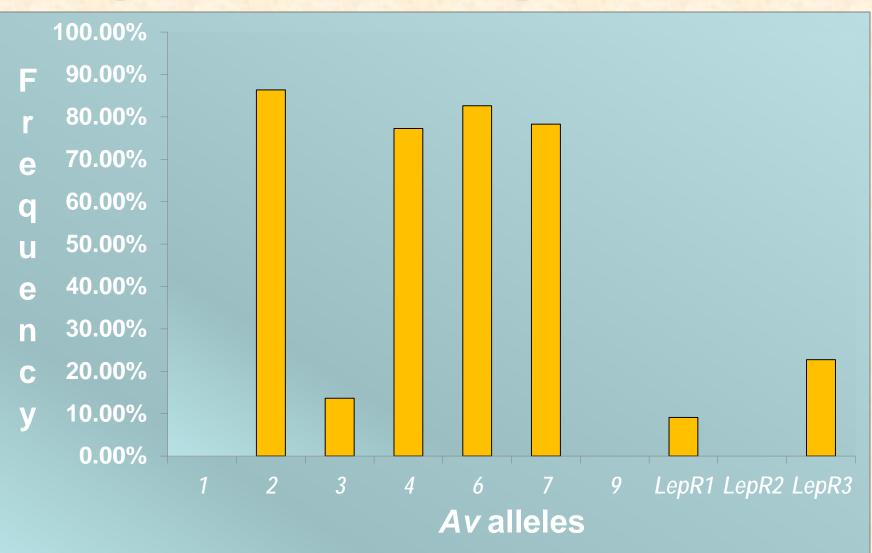
MT29	<i>Rlm1,9</i>	Falcon MX	RIm4,6
Grizzly	<i>Rlm1,3</i>	Darmor MX	RIm6,9
Cooper	<i>Rlm1,4</i>	Cutlass	<i>RIm</i> 5,6?
Samouraï	<i>Rlm2,9</i>	23-2-1	RIm7
Glacier	<i>Rlm2,3</i>	Darmor	RIm9
Verona	<i>RIm2,4</i>	Line 1065	LepR1
22-1-1	RIm3	Line 1135	LepR2
Falcon	Rlm4	Surpass400	Rlm1,LepR3


Replacing the earlier PG system

Assessment of *L. maculans* isolate with host differentials



0-9 rating scale


L. maculans race profile -2010

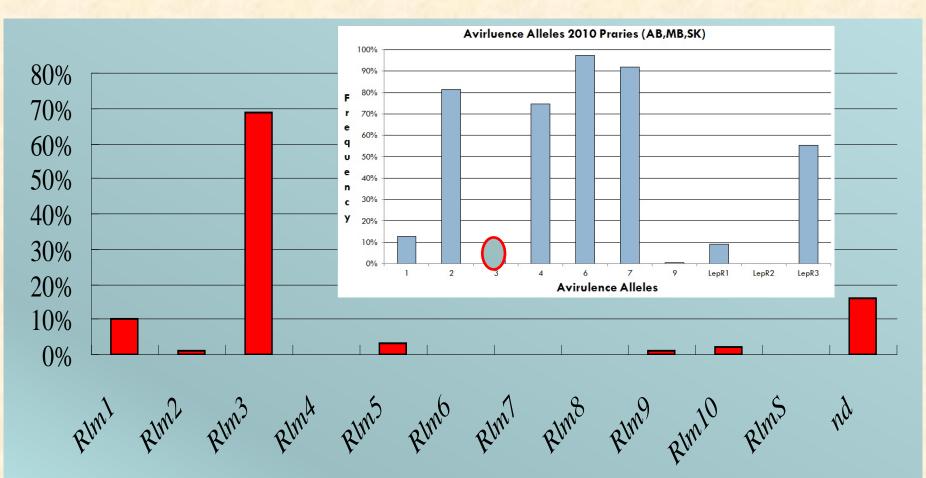
Regional variation – southern MB 2010

Regional variation – Vegreville, AB 2010

II. R genes in canola cultivars/lines

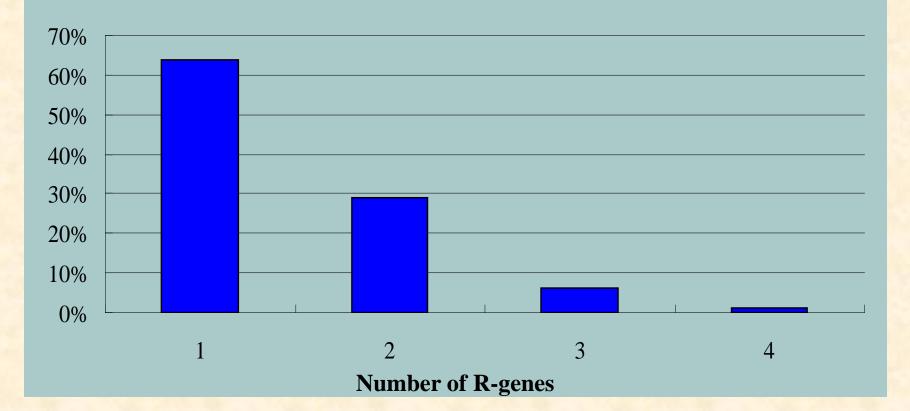
A differential set of *L. maculans* isolates

- A total of 19 *L. maculans* isolates with defined *Av* genes were employed to determine *R* genes present in canola at Dr. Fernando's lab at U of M

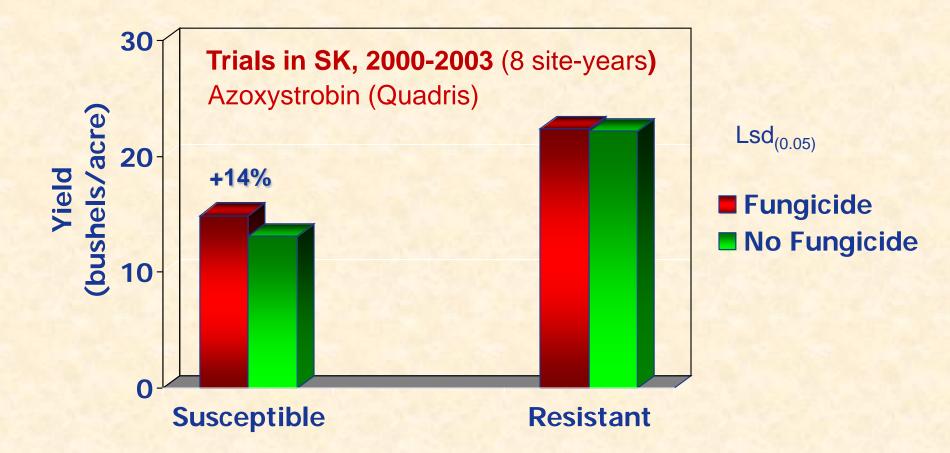

Canola cultivars/lines

- A collection of 87 canola cultivars/lines obtained from several seed companies, government labs and other research institutions were characterized based on seedling inoculation using the differential set of *L. maculans* isolates.

Av genotypes of L. maculans isolates


Isolates	AvrLm1	AvrLm2	AvrLm3	AvrLm4	AvrLm5	AvrLm6	AvrLm7	AvrLm8	AvrLm9	AvrLm10	AvrLmS
D1	avr	Avr	avr	avr	Avr	Avr	avr	avr	Avr	nd	nd
D2	avr	avr	avr	avr	Avr	Avr	avr	Avr	avr	nd	Avr
D3	avr	avr	avr	avr	Avr	avr	avr	avr	avr	nd	avr
D4	avr	avr	avr	Avr	Avr	Avr	Avr	Avr	avr	nd	avr
D5	Avr	Avr	avr	Avr	avr	avr	Avr	avr	avr	nd	Avr
D6	Avr	avr	avr	avr	Avr	Avr	avr	Avr	avr	nd	Avr
D7	Avr	avr	Avr	avr	Avr	Avr	avr	Avr	avr	nd	nd
D8	avr	avr	avr	avr	Avr	avr	Avr	nd	avr	nd	avr
D9	avr	avr	avr	avr	Avr	Avr	Avr	nd	avr	nd	avr
D10	avr	avr	avr	avr avr	Avr	Avr	avr	Avr	Avr	nd	Avr
D13	avr	avr	avr	Avr	nd	Avr	Avr	nd	avr	nd	avr
D14	Avr	avr	avr	avr	nd	avr	Avr	nd	avr	nd	Avr
S7	Avr	avr	avr	avr	Avr	Avr	Avr	nd	avr	avr	avr
ICBN14	avr	avr	avr	avr	Avr	Avr	avr	avr	avr	Avr	avr
PHW1223	avr	avr	avr	avr	Avr	Avr	avr	Avr	Avr	avr	avr
R2	avr	avr	avr	avr	Avr	avr	Avr	nd	avr	Avr	avr
AD-746	avr	avr	Avr	avr	nd	Avr	avr	nd	avr	avr	avr
JN2	avr	avr	avr	avr	Avr	Avr	Avr	Avr	avr	avr	avr
JN3	Avr	avr	avr	Avr	Avr	Avr	Avr	Avr	avr	avr	avr

R genes found in 87 canola cvs/lines


Percentage of cultivars/lines carrying each R-gene

R genes in 87 canola cultivars/lines

Percentage of cultivars/lines carrying multiple R-genes

III. Fungicides & application timing

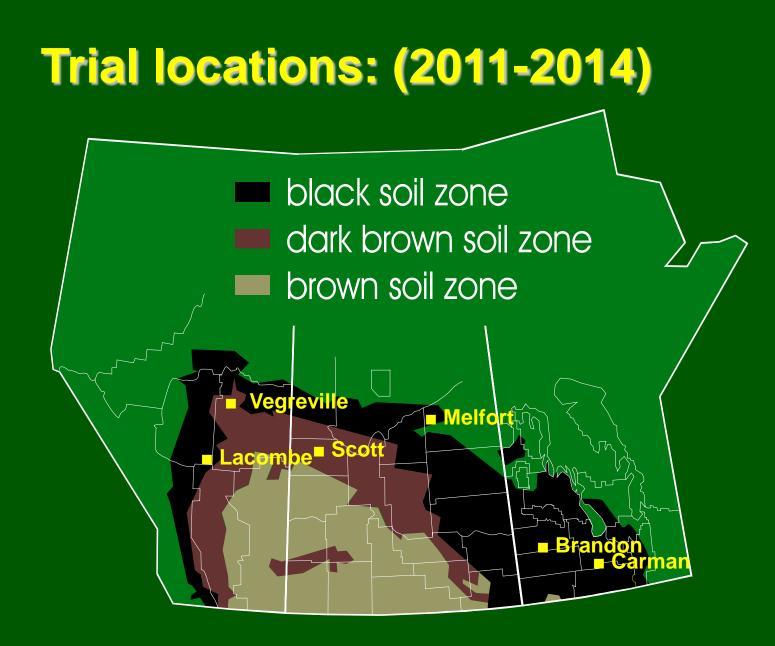
By HR Kutcher

New fungicides and application timing

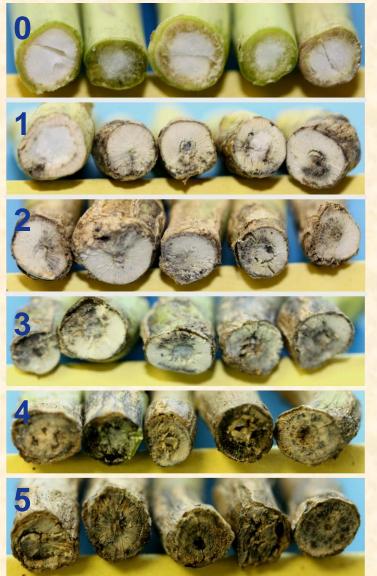
Treatments

On S cultivar (no R-genes)

- 1. Non-treated control
- 2. Headline @2-4 leaf stage
- 3. Quadris @2-4 leaf stage
- 4. Tilt @2-4 leaf stage
- 5. Quilt @2-4 leaf stage
- 6. Headline @just prior to bolting
- 7. Tilt @2-4 leaf, Headline @pre-bolting
- 8. Headline @2-4 leaf, Tilt @pre-bolting


On MR cultivar (43E01)

- 1. Non-sprayed control
- 2. Headline @2-4 leaf stage


On R cultivar (45H29)

- 1. Non-sprayed control
- 2. Headline @2-4 leaf stage

All products were applied at label recommended rates

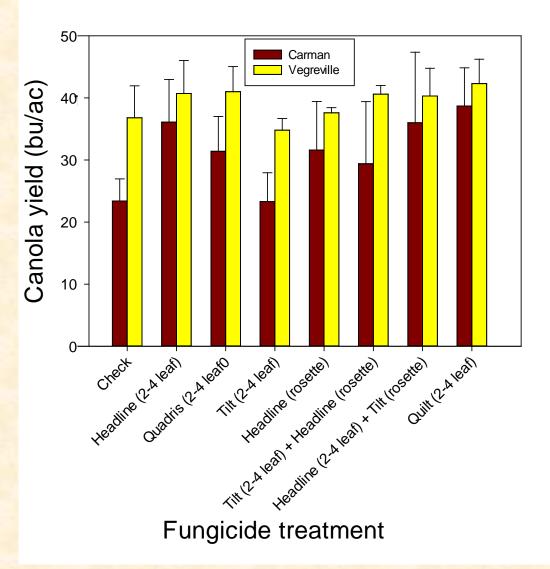
Trial assessment

- Disease incidence, severity were rated at near maturity
- Each replicated plots were harvested separately, seeds dried, cleaned and the yield taken for each replicate
- Stubbles were left in plots for initial inoculum in the following year
- New plots seeded adjacent to the previous plot area

Blackleg severity on S cultivar –2011 (3 sites)

Treatment	Melfort	Carman	vegreville	
Nontreated control	0.9	1.8	1.5	
Headline (2-4 leaf)	0.9	0.4 *	1.2	
Quadris (2-4 leaf)	0.9	0.6 *	1.1	
Tilt (2-4 leaf)	1.1	2.7	1.4	
Quilt (2-4 leaf)	0.5	1.0	1.4	
Headline (rosette)	0.9	1.5	1.2	
Tilt (2-4 L) + Headline (rosette)	0.6	1.2	1.1	
Headline (2-4 L) + Tilt (rosette)	0.6	0.7 *	1.2	

* Significant at P=0.05 (Dunnetts' test)


Blackleg severity on S cultivar –2012 (5 sites)#

Treatment	Brandon	Carman	Vegreville
Nontreated control	1.9	2.9	3.4
Headline (2-4 leaf)	1.5	0.9 *	2.2 *
Quadris (2-4 leaf)	1.4	1.6 *	1.7 *
Tilt (2-4 leaf)	1.7	2.3	2.5
Quilt (2-4 leaf)	1.5	2.1	1.7 *
Headline (rosette)	2.5	2.3	1.7 *
Tilt (2-4 L) + Headline (rosette)	2.6	2.6	1.7 *
Headline (2-4 L) + Tilt (rosette)	1.5	1.2 *	1.8 *

The disease severity at Melfort and Scott sites (SK) was <1</p>

* Significant at P=0.05 (Dunnetts' test)

Yield of S cultivar was not affected by fungicide treatments (2011)

No substantial increase in yield observed with any of the fungicide treatments.

High variability with yield data

Yield (bu/ac) of S cultivar was not affected by fungicide treatments (2012)#

Treatment	Brandon	Carman	Vegreville
Non-treated control	10.6	24.1	21.3
Headline (2-4 leaf)	10.0	25.0	27.6
Quadris (2-4 leaf)	12.7	27.4	23.5
Tilt (2-4 leaf)	9.7	22.7	23.0
Quilt (2-4 leaf)	12.3	33.0	27.5
Headline (rosette)	10.9	28.0	26.9
Tilt (2-4 leaf) + Headline (rosette)	10.5	24.0	25.0
Headline (2-4 leaf) + Tilt (rosette)	11.3	29.1	24.2

[#] The disease severity at Melfort and Scott sites (SK) was <1. Stats were based on Dunnetts' test at P = 0.05.

Fungicides did not improve the yield (bu/ac) of R/MR canola cultivars

(Cultivar)	Brandon	Carman		Vegreville	31.15
Treatment	2012 #	2011#	2012	2011	2012 #
(45H29 -R)					
Nontreated	17.4	62.5	43.9	65.7	47.2
Headline	19.3	54.4	50.9	61.7	44.7
(43E01 -MR)					
Nontreated	13.5	42.6	36.8	47.0	36.3
Headline	13.6	38.7	32.1	52.8	30.8

The fungicide treatment reduced blackleg substantially (Dunnetts' test, P=0.05)

Summary

Av1, Av3, Av9, AvLep1 & AvLep2 genes showed low frequencies in the L. maculans population, so RIm1, RIm3, RIm9, LepR1, & LepR2 genes are ineffective

Regional variation in Av genes –cultivar selection (if R genes are known)?

Most cultivars/lines carry Rlm3. Other R genes are rare, showing limited diversity of R genes in canola germplasm

♦ A few lines carry multiple R genes (up to 4)

Summary continues

- Rotation of R genes may be a challenge –lack of diversity
- Quantitative R genes may be important, but poorly understood
- Early spray (2-4 leaf stage) with Headline/Quadris reduced blackleg 3 out 5 site-years on S cultivar. <u>A late application (at bolting) would be less effective</u>
- None of the fungicide treatments increased canola yield substantially, regardless of host resistance

Acknowledgements

Technicians, graduate students, coop students at AAFC, Saskatoon/Melfort/Scott, SK; Brandon, MB; Lacombe, AB, University of Manitoba, and Alberta Innovates provided technical assistance

This study is partially funded by Canola Council of Canada