2,280 research outputs found

    Spatial Distribution of Aphis glycines (Hemiptera: Aphididae): A Summary of the Suction Trap Network

    Get PDF
    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an economically important pest of soybean, Glycine max (L.) Merrill, in the United States. Phenological information ofA. glycines is limited; specifically, little is known about factors guiding migrating aphids and potential impacts of long distance flights on local population dynamics. Increasing our understanding of A. glycines population dynamics may improve predictions of A. glycines outbreaks and improve management efforts. In 2005 a suction trap network was established in seven Midwest states to monitor the occurrence of alates. By 2006, this network expanded to 10 states and consisted of 42 traps. The goal of the STN was to monitor movement of A. glycines from their overwintering hostRhamnus spp. to soybean in spring, movement among soybean fields during summer, and emigration from soybean to Rhamnus in fall. The objective of this study was to infer movement patterns ofA. glycines on a regional scale based on trap captures, and determine the suitability of certain statistical methods for future analyses. Overall, alates were not commonly collected in suction traps until June. The most alates were collected during a 3-wk period in the summer (late July to mid-August), followed by the fall, with a peak capture period during the last 2 wk of September. Alate captures were positively correlated with latitude, a pattern consistent with the distribution of Rhamnus in the United States, suggesting that more southern regions are infested by immigrants from the north

    Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology

    Get PDF
    BACKGROUND: The arrival of RNA-seq as a high-throughput method competitive to the established microarray technologies has necessarily driven a need for comparative evaluation. To date, cross-platform comparisons of these technologies have been relatively few in number of platforms analyzed and were typically gene name annotation oriented. Here, we present a more extensive and yet precise assessment to elucidate differences and similarities in performance of numerous aspects including dynamic range, fidelity of raw signal and fold-change with sample titration, and concordance with qRT-PCR (TaqMan). To ensure that these results were not confounded by incompatible comparisons, we introduce the concept of probe mapping directed “transcript pattern”. A transcript pattern identifies probe(set)s across platforms that target a common set of transcripts for a specific gene. Thus, three levels of data were examined: entire data sets, data derived from a subset of 15,442 RefSeq genes common across platforms, and data derived from the transcript pattern defined subset of 7,034 RefSeq genes. RESULTS: In general, there were substantial core similarities between all 6 platforms evaluated; but, to varying degrees, the two RNA-seq protocols outperformed three of the four microarray platforms in most categories. Notably, a fourth microarray platform, Agilent with a modified protocol, was comparable, or marginally superior, to the RNA-seq protocols within these same assessments, especially in regards to fold-change evaluation. Furthermore, these 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80 % fold-change concordance with the gold standard qRT-PCR (TaqMan). CONCLUSIONS: This study suggests that microarrays can perform on nearly equal footing with RNA-seq, in certain key features, specifically when the dynamic range is comparable. Furthermore, the concept of a transcript pattern has been introduced that may minimize potential confounding factors of multi-platform comparison and may be useful for similar evaluations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1913-6) contains supplementary material, which is available to authorized users

    Two New Long-Period Giant Planets from the McDonald Observatory Planet Search and Two Stars with Long-Period Radial Velocity Signals Related to Stellar Activity Cycles

    Get PDF
    We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (ψ^1 Dra B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 M_(Jup) and an orbital semimajor axis of 5.2 AU. The giant planet ψ^1 Dra Bb has a minimum mass of 1.5 M_(Jup) and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of ψ^1 Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter–Saturn pair. The primary of the binary star system, ψ^1 Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases—HD 10086 and HD 102870 (β Virginis)—of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet

    Having a word with yourself:neural correlates of self-criticism and self-reassurance

    Get PDF
    Self-criticism is strongly correlated with a range of psychopathologies, such as depression, eating disorders and anxiety. In contrast, self-reassurance is inversely associated with such psychopathologies. Despite the importance of self-judgements and evaluations, little is known about the neurophysiology of these internal processes. The current study therefore used a novel fMRI task to investigate the neuronal correlates of self-criticism and self-reassurance. Participants were presented statements describing two types of scenario, with the instruction to either imagine being self-critical or self-reassuring in that situation. One scenario type focused on a personal setback, mistake or failure, which would elicit negative emotions, whilst the second was of a matched neutral event. Self-criticism was associated with activity in lateral prefrontal cortex (PFC) regions and dorsal anterior cingulate (dAC), therefore linking self-critical thinking to error processing and resolution, and also behavioural inhibition. Self-reassurance was associated with left temporal pole and insula activation, suggesting that efforts to be self-reassuring engage similar regions to expressing compassion and empathy towards others. Additionally, we found a dorsal/ventral PFC divide between an individual's tendency to be self-critical or self-reassuring. Using multiple regression analyses, dorsolateral PFC activity was positively correlated with high levels of self-criticism (assessed via self-report measure), suggesting greater error processing and behavioural inhibition in such individuals. Ventrolateral PFC activity was positively correlated with high self-reassurance. Our findings may have implications for the neural basis of a range of mood disorders that are characterised by a preoccupation with personal mistakes and failures, and a self-critical response to such events

    Parental phonological memory contributes to prediction of outcome of late talkers from 20 months to 4 years: a longitudinal study of precursors of specific language impairment

    Get PDF
    Background Many children who are late talkers go on to develop normal language, but others go on to have longer-term language difficulties. In this study, we considered which factors were predictive of persistent problems in late talkers. Methods Parental report of expressive vocabulary at 18 months of age was used to select 26 late talkers and 70 average talkers, who were assessed for language and cognitive ability at 20 months of age. Follow-up at 4 years of age was carried out for 24 late and 58 average talkers. A psychometric test battery was used to categorize children in terms of language status (unimpaired or impaired) and nonverbal ability (normal range or more than 1 SD below average). The vocabulary and non-word repetition skills of the accompanying parent were also assessed. Results Among the late talkers, seven (29%) met our criteria for specific language impairment (SLI) at 4 years of age, and a further two (8%) had low nonverbal ability. In the group of average talkers, eight (14%) met the criteria for SLI at 4 years, and five other children (8%) had low nonverbal ability. Family history of language problems was slightly better than late-talker status as a predictor of SLI.. The best predictors of SLI at 20 months of age were score on the receptive language scale of the Mullen Scales of Early Learning and the parent's performance on a non-word repetition task. Maternal education was not a significant predictor of outcome. Conclusions In this study, around three-quarters of late talkers did not have any language difficulties at 4 years of age, provided there was no family history of language impairment. A family history of language-literacy problems was found to be a significant predictor for persisting problems. Nevertheless, there are children with SLI for whom prediction is difficult because they did not have early language delay

    A highly attenuated recombinant human respiratory syncytial virus lacking the G protein induces long-lasting protection in cotton rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiratory syncytial virus (RSV) is a primary cause of serious lower respiratory tract illness for which there is still no safe and effective vaccine available. Using reverse genetics, recombinant (r)RSV and an rRSV lacking the G gene (ΔG) were constructed based on a clinical RSV isolate (strain 98-25147-X).</p> <p>Results</p> <p>Growth of both recombinant viruses was equivalent to that of wild type virus in Vero cells, but was reduced in human epithelial cells like Hep-2. Replication in cotton rat lungs could not be detected for ΔG, while rRSV was 100-fold attenuated compared to wild type virus. Upon single dose intranasal administration in cotton rats, both recombinant viruses developed high levels of neutralizing antibodies and conferred comparable long-lasting protection against RSV challenge; protection against replication in the lungs lasted at least 147 days and protection against pulmonary inflammation lasted at least 75 days.</p> <p>Conclusion</p> <p>Collectively, the data indicate that a single dose immunization with the highly attenuated ΔG as well as the attenuated rRSV conferred long term protection in the cotton rat against subsequent RSV challenge, without inducing vaccine enhanced pathology. Since ΔG is not likely to revert to a less attenuated phenotype, we plan to evaluate this deletion mutant further and to investigate its potential as a vaccine candidate against RSV infection.</p

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
    corecore