2,268 research outputs found

    An Analysis of NCATE\u27s Decision to Drop Social Justice

    Get PDF
    Maybe it wouldn\u27t bother us if we hadn\u27t picked up tiny rotten teeth from our classroom floors in a toothfairyless neighborhood. Maybe it wouldn\u27t seem as offensive if we hadn\u27t watched our pupils gobble down free breakfasts and lunchesā€”for some, their only meals five days a week. Perhaps we could overlook it if we didn\u27t know about our studentsā€™ lossesā€”a brother killed in a drive-by shooting, a grandmotherā€™s grisly death dealt by a crack dealer, house fires that destroyed everything. Maybe it wouldn\u27t incense us if our elementary pupils had had more up-to-date reference materials than 1952 dictionaries and a donated set of World Books, if we had had a school library or hot water or some playground equipment. And we probably wouldn\u27t be as disgusted if we hadn\u27t watched our pupils cry and vomit on high-stakes test days when they intuitively knew they couldn\u27t pass a test because of their limited vocabularies and lack of prior knowledgeā€”consequences of poverty and societal neglect (Johnson & Johnson, 2006). But disgusted we are because NCATE did not stand up for the children we recently taught. Why did the National Council for Accreditation of Teacher Education (NCATE) have such difficulty defining ā€œsocial justiceā€ that it has banished the term from its lexicon

    Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses

    Get PDF
    Fracture surfaces of Zr-based bulk metallic glasses of various compositions tested in the as-cast and annealed conditions were analyzed using scanning electron microscopy. The tougher samples have shown highly jagged patterns at the beginning stage of crack propagation, and the length and roughness of this jagged pattern correlate well with the measured fracture toughness values. These jagged patterns, the main source of energy dissipation in the sample, are attributed to the formation of shear bands inside the sample. This observation provides strong evidence of significant ā€œplastic zoneā€ screening at the crack tip

    The Wyoming Survey for H-alpha. I. Initial Results at z ~ 0.16 and 0.24

    Full text link
    The Wyoming Survey for H-alpha, or WySH, is a large-area, ground-based, narrowband imaging survey for H-alpha-emitting galaxies over the latter half of the age of the Universe. The survey spans several square degrees in a set of fields of low Galactic cirrus emission. The observing program focuses on multiple dz~0.02 epochs from z~0.16 to z~0.81 down to a uniform (continuum+line) luminosity at each epoch of ~10^33 W uncorrected for extinction (3sigma for a 3" diameter aperture). First results are presented here for 98+208 galaxies observed over approximately 2 square degrees at redshifts z~0.16 and 0.24, including preliminary luminosity functions at these two epochs. These data clearly show an evolution with lookback time in the volume-averaged cosmic star formation rate. Integrals of Schechter fits to the extinction-corrected H-alpha luminosity functions indicate star formation rates per co-moving volume of 0.009 and 0.014 h_70 M_sun/yr/Mpc^3 at z~0.16 and 0.24, respectively. The formal uncertainties in the Schechter fits, based on this initial subset of the survey, correspond to uncertainties in the cosmic star formation rate density at the >~40% level; the tentative uncertainty due to cosmic variance is 25%, estimated from separately carrying out the analysis on data from the first two fields with substantial datasets.Comment: To appear in the Astronomical Journa

    Measuring Galaxy Star Formation Rates From Integrated Photometry: Insights from Color-Magnitude Diagrams of Resolved Stars

    Full text link
    We use empirical star formation histories (SFHs), measured from HST-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of ~50 nearby dwarf galaxies (6.5 < log M/M_* < 8.5, with metallicities ~10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared (NIR) and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6micron and 4.5micron bands, we find that modeled SEDs systematically over-predict observed luminosities by up to ~0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of ~2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5% to100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.Comment: 22 pages, 15 figures, ApJ accepte

    The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry

    Get PDF
    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, H-alpha, and HST imaging from 11HUGS (11 Mpc H-alpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8um PAH emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between infrared-to-ultraviolet ratio and ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.Comment: Accepted for publication in ApJ; Figures 1,8,9 provided as jpeg

    Empirical ugri-UBVRc Transformations for Galaxies

    Full text link
    We present empirical color transformations between Sloan Digital Sky Survey ugri and Johnson-Cousins UBVRc photometry for nearby galaxies (D < 11 Mpc). We use the Local Volume Legacy (LVL) galaxy sample where there are 90 galaxies with overlapping observational coverage for these two filter sets. The LVL galaxy sample consists of normal, non-starbursting galaxies. We also examine how well the LVL galaxy colors are described by previous transformations derived from standard calibration stars and model-based galaxy templates. We find significant galaxy color scatter around most of the previous transformation relationships. In addition, the previous transformations show systematic offsets between transformed and observed galaxy colors which are visible in observed color-color trends. The LVL-based galaxygalaxy transformations show no systematic color offsets and reproduce the observed color-color galaxy trends.Comment: Accepted for publication in MNRAS (9 pages, 6 figures, 4 tables

    Spitzer Local Volume Legacy (LVL) SEDs and Physical Properties

    Full text link
    We present the panchromatic spectral energy distributions (SEDs) of the Local Volume Legacy (LVL) survey which consists of 258 nearby galaxies (D<D<11 Mpc). The wavelength coverage spans the ultraviolet to the infrared (1500 AĖš\textrm{\AA} to 24 Ī¼\mum) which is utilized to derive global physical properties (i.e., star formation rate, stellar mass, internal extinction due to dust.). With these data, we find color-color relationships and correlated trends between observed and physical properties (i.e., optical magnitudes and dust properties, optical color and specific star formation rate, and ultraviolet-infrared color and metallicity). The SEDs are binned by different galaxy properties to reveal how each property affects the observed shape of these SEDs. In addition, due to the volume-limited nature of LVL, we utilize the dwarf-dominated galaxy sample to test star formation relationships established with higher-mass galaxy samples. We find good agreement with the star-forming "main-sequence" relationship, but find a systematic deviation in the infrared "main-sequence" at low luminosities. This deviation is attributed to suppressed polycyclic aromatic hydrocarbon (PAH) formation in low metallicity environments and/or the destruction of PAHs in more intense radiation fields occurring near a suggested threshold in sSFR at a value of log(sSFRsSFR) āˆ¼\sim āˆ’-10.2.Comment: Accepted for publication in MNRAS (15 pages, 14 figures, 1 table

    The Spitzer Local Volume Legacy (LVL) Global Optical Photometry

    Full text link
    We present the global optical photometry of 246 galaxies in the Local Volume Legacy (LVL) survey. The full volume-limited sample consists of 258 nearby (D < 11 Mpc) galaxies whose absolute B-band magnitude span a range of -9.6 < M_B < -20.7 mag. A composite optical (UBVR) data set is constructed from observed UBVR and SDSS ugriz imaging, where the ugriz magnitudes are transformed into UBVR. We present photometry within three galaxy apertures defined at UV, optical, and IR wavelengths. Flux comparisons between these apertures reveal that the traditional optical R25 galaxy apertures do not fully encompass extended sources. Using the larger IR apertures we find color-color relationships where later-type spiral and irregular galaxies tend to be bluer than earlier-type galaxies. These data provide the missing optical emission from which future LVL studies can construct the full panchromatic (UV-optical-IR) spectral energy distributions.Comment: Accepted for publication in MNRAS (9 pages, 5 figures, 5 tables

    Star-Forming or Starbursting? The Ultraviolet Conundrum

    Get PDF
    Compared to starburst galaxies, normal star forming galaxies have been shown to display a much larger dispersion of the dust attenuation at fixed reddening through studies of the IRX-beta diagram (the IR/UV ratio "IRX" versus the UV color "beta"). To investigate the causes of this larger dispersion and attempt to isolate second parameters, we have used GALEX UV, ground-based optical, and Spitzer infrared imaging of 8 nearby galaxies, and examined the properties of individual UV and 24 micron selected star forming regions. We concentrated on star-forming regions, in order to isolate simpler star formation histories than those that characterize whole galaxies. We find that 1) the dispersion is not correlated with the mean age of the stellar populations, 2) a range of dust geometries and dust extinction curves are the most likely causes for the observed dispersion in the IRX-beta diagram 3) together with some potential dilution of the most recent star-forming population by older unrelated bursts, at least in the case of star-forming regions within galaxies, 4) we also recover some general characteristics of the regions, including a tight positive correlation between the amount of dust attenuation and the metal content. Although generalizing our results to whole galaxies may not be immediate, the possibility of a range of dust extinction laws and geometries should be accounted for in the latter systems as well.Comment: 18 pages, 17 figures, accepted for publication in Ap
    • ā€¦
    corecore