27 research outputs found

    High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au

    Get PDF
    © 2018. The American Astronomical Society. All rights reserved. We present high-resolution millimeter continuum imaging of the disk surrounding the young star CI Tau, a system hosting the first hot Jupiter candidate in a protoplanetary disk system. The system has extended mm emission on which are superposed three prominent annular gaps at radii ∌13, 39, and 100 au. We argue that these gaps are most likely to be generated by massive planets so that, including the hot Jupiter, the system contains four gas giant planets at an age of only 2 Myr. Two of the new planets are similarly located to those inferred in the famous HL Tau protoplanetary disk; in CI Tau, additional observational data enables a more complete analysis of the system properties than was possible for HL Tau. Our dust and gas dynamical modeling satisfies every available observational constraint and points to the most massive ensemble of exoplanets ever detected at this age, with its four planets spanning a factor 1000 in orbital radius. Our results show that the association between hot Jupiters and gas giants on wider orbits, observed in older stars, is apparently in place at an early evolutionary stage

    Reflected Light from Sand Grains in the Terrestrial Zone of a Protoplanetary Disk

    Full text link
    We show that grains have grown to ~mm size (sand sized) or larger in the terrestrial zone (within ~3 AU) of the protoplanetary disk surrounding the 3 Myr old binary star KH 15D. We also argue that the reflected light in the system reaches us by back scattering off the far side of the same ring whose near side causes the obscuration.Comment: 22 pages, 5 figures. To be published in Nature, March 13, 2008. Contains a Supplemen

    Spatially Resolved Magnetic Field Structure in the Disk of a T Tauri Star

    Get PDF
    Magnetic fields in accretion disks play a dominant role during the star formation process but have hitherto been observationally poorly constrained. Field strengths have been inferred on T Tauri stars themselves and possibly in the innermost part of the accretion disk, but the strength and morphology of the field in the bulk of the disk have not been observed. Unresolved measurements of polarized emission (arising from elongated dust grains aligned perpendicular to the field) imply average fields aligned with the disks. Theoretically, the fields are expected to be largely toroidal, poloidal, or a mixture of the two, which imply different mechanisms for transporting angular momentum in the disks of actively accreting young stars such as HL Tau. Here we report resolved measurements of the polarized 1.25 mm continuum emission from HL Tau's disk. The magnetic field on a scale of 80 AU is coincident with the major axis (~210 AU diameter) of the disk. From this we conclude that the magnetic field inside the disk at this scale cannot be dominated by a vertical component, though a purely toroidal field does not fit the data well either. The unexpected morphology suggests that the magnetic field's role for the accretion of a T Tauri star is more complex than the current theoretical understanding.Comment: Accepted for publication in Natur

    Solar-type dynamo behaviour in fully convective stars without a tachocline

    Get PDF
    In solar-type stars (with radiative cores and convective envelopes), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in Sun-like stars. As the X-ray activity - rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.Comment: 6 pages, 1 figure. Accepted for publication in Nature (28 July 2016). Author's version, including Method

    Direct magnetic field detection in the innermost regions of an accretion disc

    Full text link
    Models predict that magnetic fields play a crucial role in the physics of astrophysical accretion disks and their associated winds and jets. For example, the rotation of the disk twists around the rotation axis the initially vertical magnetic field, which responds by slowing down the plasma in the disk and by causing it to fall towards the central star. The magnetic energy flux produced in this process points away from the disk, pushing the surface plasma outwards, leading to a wind from the disk and sometimes a collimated jet. But these predictions have hitherto not been supported by observations. Here we report the direct detection of the magnetic field in the core of the protostellar accretion disk FU Orionis. The surface field reaches strengths of about 1 kG close to the centre of the disk, and it includes a significant azimuthal component, in good agreement with recent models. But we find that the field is very filamentary and slows down the disk plasma much more than models predict, which may explain why FU Ori fails to collimate its wind into a jet.Comment: 11 pages, 3 figure

    Stellar Coronal and Wind Models: Impact on Exoplanets

    Full text link
    Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic field line regions. In this Chapter, we review some basic properties of stellar coronae and winds and present some existing models. In the last part of this Chapter, we discuss the effects of coronal winds on exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief: Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer Reference Work

    TESS hunt for young and maturing exoplanets (THYME). VI. an 11 Myr giant planet transiting a very-low-mass star in lower centaurus crux

    Get PDF
    Mature super-Earths and sub-Neptunes are predicted to be ≃ Jovian radius when younger than 10 Myr. Thus, we expect to find 5–15 R⊕ planets around young stars even if their older counterparts harbor none. We report the discovery and validation of TOI 1227b, a 0.85 ± 0.05 RJ (9.5 R⊕) planet transiting a very-low-mass star (0.170 ± 0.015 M⊙) every 27.4 days. TOI 1227's kinematics and strong lithium absorption confirm that it is a member of a previously discovered subgroup in the Lower Centaurus Crux OB association, which we designate the Musca group. We derive an age of 11 ± 2 Myr for Musca, based on lithium, rotation, and the color–magnitude diagram of Musca members. The TESS data and ground-based follow-up show a deep (2.5%) transit. We use multiwavelength transit observations and radial velocities from the IGRINS spectrograph to validate the signal as planetary in nature, and we obtain an upper limit on the planet mass of ≃0.5 MJ. Because such large planets are exceptionally rare around mature low-mass stars, we suggest that TOI 1227b is still contracting and will eventually turn into one of the more common <5 R⊕ planets

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    Spectropolarimetry of stars across the H-R diagram

    Full text link
    The growing sample of magnetic stars shows a remarkable diversity in the properties of their magnetic fields. The overall goal of current studies is to understand the origin, evolution, and structure of stellar magnetic fields in stars of different mass at different evolutionary stages. In this chapter we discuss recent measurements together with the underlying assumptions in the interpretation of data and the requirements, both observational and theoretical, for obtaining a realistic overview of the role of magnetic fields in various types of stars.Comment: 23 pages, 3 figures, chapter 7 of "Astronomical Polarisation from the Infrared to Gamma Rays", published in Astrophysics and Space Science Library 46
    corecore