Magnetic fields in accretion disks play a dominant role during the star
formation process but have hitherto been observationally poorly constrained.
Field strengths have been inferred on T Tauri stars themselves and possibly in
the innermost part of the accretion disk, but the strength and morphology of
the field in the bulk of the disk have not been observed. Unresolved
measurements of polarized emission (arising from elongated dust grains aligned
perpendicular to the field) imply average fields aligned with the disks.
Theoretically, the fields are expected to be largely toroidal, poloidal, or a
mixture of the two, which imply different mechanisms for transporting angular
momentum in the disks of actively accreting young stars such as HL Tau. Here we
report resolved measurements of the polarized 1.25 mm continuum emission from
HL Tau's disk. The magnetic field on a scale of 80 AU is coincident with the
major axis (~210 AU diameter) of the disk. From this we conclude that the
magnetic field inside the disk at this scale cannot be dominated by a vertical
component, though a purely toroidal field does not fit the data well either.
The unexpected morphology suggests that the magnetic field's role for the
accretion of a T Tauri star is more complex than the current theoretical
understanding.Comment: Accepted for publication in Natur