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Magnetic fields in accretion disks play a dominant role during the star formation process1, 2

but have hitherto been observationally poorly constrained. Field strengths have been inferred

on T Tauri stars themselves3 and possibly in the innermost part of the accretion disk4, but
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the strength and morphology of the field in the bulk of the disk have not been observed.

Unresolved measurements of polarized emission (arising from elongated dust grains aligned

perpendicular to the field5) imply average fields aligned with the disks6, 7. Theoretically, the

fields are expected to be largely toroidal, poloidal, or a mixture of the two1,2, 8–10, which imply

different mechanisms for transporting angular momentum in the disks of actively accreting

young stars such as HL Tau11. Here we report resolved measurements of the polarized 1.25

mm continuum emission from HL Tau’s disk. The magnetic field on a scale of 80 AU is

coincident with the major axis (∼210 AU diameter12) of the disk. From this we conclude that

the magnetic field inside the disk at this scale cannot be dominated by a vertical component,

though a purely toroidal field does not fit the data well either. The unexpected morphology

suggests that the magnetic field’s role for the accretion of a T Tauri star is more complex than

the current theoretical understanding.

HL Tau is located 140 pc away13 in the Taurus molecular cloud. Although HL Tau is a

T Tauri star, it is considered to be an early example due to its bipolar outflow14 and possible resid-

ual envelope15. Observations and modeling of the protostar with a thick, flared disk suggest a

stellar mass of ∼0.55M! and a disk mass of 0.14M!
12. A possible planet forming in HL Tau’s

disk has been observed16, though this detection was not confirmed12. However, HL Tau’s disk is

gravitationally unstable which could favor fragmentation into Jupiter mass planets12, 16. HL Tau

has the brightest T Tauri star disk at millimeter wavelengths, allowing for the best possible probe

of the fractional polarization P . Previous observations of the polarization of HL Tau’s disk yielded

marginally significant, spatially unresolved polarization detections with the James Clerk Maxwell
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Telescope (JCMT, P = 3.6% ± 2.4% at 14′′ = 1960 AU resolution)6 and the Submillimeter Ar-

ray (SMA, P = 0.86% ± 0.4% at 2′′ = 280 AU resolution, archival observations released in this

paper). In addition, HL Tau observations with the Combined Array for Millimeter-wave Astron-

omy (CARMA) have shown that the interferometric emission comes entirely from the disk with

no contamination of large-scale envelope emission12. HL Tau is therefore a very promising source

to search for a resolved polarization detection.

Only through observations of polarized dust emission can the morphology of the magnetic

field be ascertained, though higher resolution dust polarimetric observations of T Tauri star disks do

not detect polarization and place stringent upper limits (P < 1%) on the polarization fraction17, 18,

which disagree with theoretical models of high efficiency grain alignment with a purely toroidal

field8. There is a clear discrepancy between theoretical models of the magnetic fields in disks and

the observations to-date, requiring more sensitive observations of the dust polarization. The SMA

recently detected the magnetic field morphology in the circumstellar disk of the Class 0 (i.e., the

earliest protostellar stage) protostar IRAS 16293–2422 B19, but since this disk is nearly face-on,

observations cannot detect the vertical component of the magnetic field. Moreover, this source

is perhaps one of the youngest of the known Class 0 sources20, increasing the chances that the

polarized flux could be from the natal environment. Nevertheless, since the disk is the brightest

component at the probed scale, polarization most likely comes from the disk, and the magnetic

field morphology hints at toroidal wrapping19.

We have obtained 1.25 mm CARMA polarimetric maps of HL Tau at 0.6′′ (84 AU) resolution
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and plotted the magnetic field morphology in Figure 1. This is a resolved detection (with approx-

imately 3 independent beams) of the magnetic field morphology in the circumstellar disk of a T

Tauri star. The central magnetic field vector has a measured position angle (PA, measured counter-

clockwise from north) of θB = 143.6◦± 4.4◦, which is within 9◦ of the previously measured PA of

the major axis of the HL Tau disk12. This angle is in agreement with that measured by the JCMT

(θB = 140◦ ± 20◦)6 and archival observations from the SMA analyzed here (θB = 137◦ ± 13◦).

The central vector has a fractional polarization of P = 0.59% ± 0.09%, and P varies over the

disk between 0.54% ± 0.13% and 2.4% ± 0.7% with an average and median P of 0.90% and

0.72% respectively, in agreement with the upper limits (P < 1%) of other T Tauri star polarimetric

observations17, 18. This median value is significantly less than IRAS 16293–2422 B (1.4%) which

could indicate disk evolution; the dust grains could grow larger and become more spherical with

time, and/or the magnetic field is becoming more turbulent.

To constrain the intrinsic magnetic field configuration inside HL Tau’s disk, we made a sim-

ple model which incorporates a combination of a toroidal and a vertical component; a radial field

component inside the bulk of the disk (most likely probed by our polarization observation) is

expected to be sheared quickly into a toroidal configuration by differential rotation on the short

time-scale of the disk rotation. We use the best estimates of disk parameters12 (PA = 136◦ and

inclination i = 40◦, both accurate within a few degrees) and vary the relative strength of the two

field components from 100% toroidal and 0% vertical to 0% toroidal and 100% vertical in 1%

increments (modeling details are in the Methods section). Using the ≥3σ detections in Figure 1,

we find that a completely toroidal field is the best fit model. However, the reduced χ value is
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high (69, where a value of 1 indicates an optimal fit). If we do not constrain the magnetic field to

be aligned with the best-fit disk12 we can achieve a better fit. For a disk with a PA of 151◦, the

best fit model to the observations is almost completely edge on, with an inclination of i = 89◦

(reduced χ value of 1). Figure 2 shows the observed versus the modeled parameters for PA of

136◦ and i = 40◦ as well as PA of 151◦ and i = 89◦. While the PA does not vary largely from the

major axis of the disk (15◦ difference), i = 89◦ is inconsistent with our disk dimensions and the

well-constrained continuum observations of other studies12, 21. There is also no detected polarized

flux in the northeast (upper-left) and southwest (bottom-right) of the disk where P for a toroidal

field should be the highest due to less beam smearing. This fact, along with the poor fit with the

constrained disk parameters, indicates that although there is probably a toroidal component, the

field apparently has substantial contributions from other components.

We note that adding a vertical component to all our models makes the fit worse. The lack

of any vertical component in the model suggests that dominant poloidal fields are likely absent

inside the disk since, as we argued earlier on dynamical grounds, a predominantly radial field is

unlikely inside the disk because of rapid differential rotation. Moreover, although points with>5σ

polarization detections fit a toroidal morphology even for the i = 40◦ model, we cannot be sure

that the disk field is only toroidal since a straight, uniform field in the plane of the disk, although

physically unlikely for a disk system, also well fits the data.

If the disk of HL Tau has a dominant toroidal component, then it is uncertain what causes

the outer vectors to not fit the toroidal morphology based on HL Tau’s best fit disk dust model12
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(Figure 2, left). Perhaps the grains in some parts of the disk do not efficiently align with the disk

field. Another possibility is that the magnetic field toward the inner disk is toroidal and beam-

averaged to be aligned with the major axis of the disk. However, toward the edge of the disk,

where the disk field may be less tightly wound and weaker, the magnetic field may be dominated

by external field lines that are already toroidal (e.g., due to a rotating envelope). The incoming

fields may strongly influence or even dominate the magnetic field in the outer disk. In any case, the

discrepancy indicates that, at least for this particular source, one needs to go beyond the simplest

magnetorotational instability2 disk models that do not include any external influence or distortion.

Both theoretical studies tailored to HL Tau and higher resolution polarization observations are

needed to resolve this puzzle.

At the 1000 AU scale, structured magnetic fields are observed around young, low-mass

protostars22, 23, but fields appear to be randomly aligned with respect to the inferred disk24, 25. Mis-

alignment of the field lines with the rotation axis can help overcome magnetic braking to create

a centrifugally supported disk at the 100 AU scale10. Further disk evolution can be driven by

magnetorotational instability2 or a magnetocentrifugal wind1, 9. A toroidally dominant disk field is

expected in the former scenario, and a significant poloidal field is required for the latter (at least

near the wind launching surface). Both processes can possibly contribute to the disk accretion at

the same time.

Until now, we have been unable to observationally constrain the magnetic field morphology

in disks. Along with the Class 0 source IRAS 16293–2422 B, the observations of HL Tau show
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that a toroidal field component may last from the low-mass protostar’s initial formation to the T

Tauri star stage – approximately the first 106 years of a protostar’s life26. The apparent absence

of vertical fields for these observations implies that magnetocentrifugal winds driven along large-

scale poloidal magnetic fields27 are probably not the dominant mechanism for redistributing the

disk’s angular momentum during the accretion process of a star at the probed 80 AU size-scale.

However, the morphology detected in HL Tau cannot be fully explained by a simple mix of toroidal

and vertical components either, requiring future observations at both large scale and small scale to

truly understand the role of magnetic fields in the formation of solar systems like our own.
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Methods

Data Reduction. The CARMA dual polarization receivers allow for the measurement of polarized

dust emission. Polarimetric maps can thus be created, which provide the flux density (Stokes I), the

PA of the dust polarization, and P at every point within the map. CARMA continuum observations

in Full Stokes mode were taken at 237 GHz in two different resolutions with each resolution having

multiple tracks. The C-array observations (∼0.79′′ resolution) consisted of four tracks in October

and November 2013 while the B-array observations (∼0.37′′ resolution) consisted of three more

tracks in November and December 2013.

We have reduced the CARMA observations using theMIRIAD package28. The dual-polarization

receivers of CARMA measure right- (R) and left-circular (L) polarization and the four cross-

polarization (RR, LL, LR, RL) terms. In order to calibrate CARMA Full Stokes observations,

apart from the usual interferometric calibrations (bandpass, phase, and flux corrections), two addi-

tional calibrations are required: XYPhase (due to L and R channel phase differences) and leakage

(due to L and R channels cross-coupling). These calibrations were done in the typical manner

for CARMA25. The leakage terms for each antenna were consistent from track to track, and the

overall accuracy of the leakage calibrations are expected to be approximately 0.1%. Day to day

consistency in polarization observations was tested by measuring the phase calibrator, 0510+180.

The polarization angle changed slightly from day to day, with a steady increase of a few degrees

with each newer track. Intraday variability is a well-known phenomenon which affects the total

flux density, the linearly polarized flux density, and the polarization angle29and likely explains the

variations of a few degrees seen in 0510+180 from track to track. Since the variation of the polar-
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Figure 1: 1. Detected magnetic field morphology of HL Tau at 0.6′′ resolution. The polariza-

tion vectors have been rotated by 90◦ to show the inferred magnetic field orientation. Red vectors

are detections> 3σP while blue vectors are detections between 2σP and 3σP . We also do not show

vectors when the signal-to-noise for Stokes I is below 2. The sizes of the vector are proportional

to the fractional polarization, P . Stokes I contours are shown for [–3, 3, 4, 6, 10, 20, 40, 60, 80,

100] ×σI , where σI = 2.1 mJy beam− . Color scale shows the polarized intensity with the color

bar in Jy beam− . The dashed line shows the major axis of PA = 136◦12. The synthesized beam is

shown on the bottom right and has a size of 0.65′′ × 0.56′′ and a PA = 79.5◦.
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Figure 2: 2. Observed magnetic field morphology compared with models. The observed 3σ

and 5σ detections are shown in red and orange, respectively, while modeled vectors are shown in

yellow. Black contours, color scale, and beam size are the same as Figure 1. a) 100% toroidal field

model with PA = 136◦ and i = 40◦. b) 100% toroidal field model with PA = 151◦ and i = 89◦.

14



ization in 0510+180 was not very large, the consistency of polarization measurements of 0510+180

between tracks made us confident that our calibration is accurate. For B-array tracks, we also saw

that the bandpass calibrator, 3C454.3, showed consistency for polarization measurements for all

the tracks. Other calibrators observed did not have polarization detected, signifying that our po-

larization detection of HL Tau is not a spurious detection. We also note that there was a slight

difference in the polarization angle between the lower and upper sideband; this difference may be

due to Faraday rotation and was almost constant for all tracks.

For bandpass calibration, C-array observations used 3C84 and B-array observations used

3C454.3. The phase calibrator used for both arrays was 0510+180. Observations of MWC349,

with an adopted flux of 2.1 Jy30provided the absolute scale for the flux calibration at 237 GHz in

most of the tracks. The bootstrapped flux of 0510+180 using MWC349 was consistent within 10%

and 15% to bootstrapped fluxes using Mars and Uranus respectively in other tracks. Since planets

are resolved at these resolutions, MWC349 is likely to have a more accurate flux calibration and

was bootstrapped for all tracks. The absolute flux uncertainty is estimated to be 15%, but only

statistical uncertainties are discussed in this work. When imaging, natural weighting was used to

maximize the sensitivity.

Detections of polarization were found in every HL Tau track with consistent polarization

angles and measurements. Since polarization is calculated from StokesQ and U and can only have

positive values, there exists a bias in the polarized intensity; hence, all our polarization measure-

ments have been de-biased25. The sensitivity in Stokes I is limited by dynamic range rather than

the flux sensitivity of the observations. The uncertainty in the absolute position angle of CARMA
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is approximately 3◦25.

These high resolution interferometric observations are insensitive to large scale structure.

Single dish and interferometric HL Tau observations find very similar compact fluxes, suggesting

that the envelope dust continuum is negligible21, and the flux appears to come entirely from the

disk12.

Also reported in this study are unpublished polarization observations (PA and P ) of HL Tau

from the SMA. These observations were taken in the compact configuration in October 2005 in

the 345 GHz atmospheric window with the Local Oscillator tuned to 341.5 GHz. The polarization

data reduction process was done in the typical manner employed by the SMA31.

Linear PolarizationModeling. We employed a flared viscous accretion disk model that was con-

strained by high angular resolution data and a broad spectral energy distribution, detailed in an-

other paper12. The accretion disk model has a power-law density distribution with an exponential

tapering, and the vertical density distribution is assumed as 1.5 times thicker than the hydrostatic

equilibrium case. The temperature distributions are calculated by interpolation of two power-law

distributions at the cold mid-plane, comparable to the results of the Monte-Carlo radiative code

RADMC-3D32and at the surface based on radiation equilibrium: Tm[K] = 190(r/AU)−′ . and

Ts[K] = 600(r/AU)−′ . . The disk parameters employed were the volume density power-law

index p = 1.064, the dust opacity spectral index β = 0.729, the disk massMd = 0.1349 M!, the

inner radius Rin = 2.4 AU, and the characteristic radius Rc = 78.9 AU. As described in the main

text, we investigated various cases of different inclination and position angles.
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Our polarization modeling consists of toroidal and vertical magnetic fields. Instead of con-

straining the detailed morphology of magnetic fields, we intended to constrain which morphology

is preferred. In order to achieve this goal, we examined 101 cases spanning over relative polariza-

tion fractions of the two orthogonal fields in steps of 1% (i.e., 100% toroidal, 99% toroidal and 1%

vertical, 98% toroidal and 2% vertical, ...). For constructing linear polarization information, we

built Stokes I ,Q, and U maps by numerically solving radiative transfer (necessary for a thick disk).

In individual integral elements of radiative transfer along line of sight, we compute the intensity

for Q and U . The fractional intensities added up to the Q and U maps by an integral element are:

∆Q = ∆I fp(ftorqtor + fverqver) (1)

∆U = ∆I fp(ftorutor + fveruver), (2)

where fp is a total polarization fraction (
√
Q + U /I), ftor and fver are relative fractions of the

toroidal and vertical fields (e.g., ftor = 0.7 and fver = 0.3 for 70% toroidal and 30% vertical

fields), and qtor and utor are cos(2χtor) and sin(2χtor) respectively. χ is the angle of the magnetic

field measured counterclockwise from the north. Similarly, qver and uver for vertical fields are

cos(2χver) and sin(2χver). Since the disk is optically thin and we only care about the morphology,

fp can be given an arbitrary value (e.g., 0.01 or 0.1). Note that the toroidal and vertical magnetic

field vectors at each integral element have been tilted and rotated based on the inclination and

the position angle of the model disk, before the calculation of the fractions. Q and U maps are

convolved with the synthesized beam from the polarization observations, and the modeled position

angles of the magnetic field morphology is created using χ = 0.5 tan− (U /Q).
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