738 research outputs found
Extremely Metal-Poor Stars. VII. The Most Metal-Poor Dwarf, CS 22876-032
We report high-resolution, high-signal-to-noise, observations of the
extremely metal-poor double-lined spectroscopic binary CS 22876-032. The system
has a long period : P = 424.7 0.6 days. It comprises two main sequence
stars having effective temperatures 6300 K and 5600 K, with a ratio of
secondary to primary mass of 0.89 0.04. The metallicity of the system is
[Fe/H] = -3.71 0.11 0.12 (random and systematic errors) -- somewhat
higher than previous estimates. We find [Mg/Fe] = 0.50, typical of values of
less extreme halo material. [Si/Fe], [Ca/Fe], and [Ti/Fe], however, all have
significantly lower values, ~ 0.0-0.1, suggesting that the heavier elements
might have been underproduced relative to Mg in the material from which this
object formed. In the context of the hypothesis that the abundance patterns of
extremely metal-poor stars are driven by individual enrichment events and the
models of Woosley and Weaver (1995), the data for CS 22876-032 are consistent
with its having been enriched by a zero-metallicity supernova of mass 30
M. As the most metal-poor near-main-sequence-turnoff star currently
known, the primary of the system has the potential to strongly constrain the
primordial lithium abundance. We find A(Li) (= log(N(Li)/N(H)) + 12.00) = 2.03
0.07, which is consistent with the finding of Ryan et al. (1999) that for
stars of extremely low metallicity A(Li) is a function of [Fe/H].Comment: 27 pages, 9 figures, accepted for publication in The Astrophysical
Journal, Sept. 1, 2000 issu
Separation of suspended particles in microfluidic systems by directional-locking in periodic fields
We investigate the transport and separation of overdamped particles under the
action of a uniform external force in a two-dimensional periodic energy
landscape. Exact results are obtained for the deterministic transport in a
square lattice of parabolic, repulsive centers that correspond to a
piecewise-continuous linear-force model. The trajectories are periodic and
commensurate with the obstacle lattice and exhibit phase-locking behavior in
that the particle moves at the same average migration angle for a range of
orientation of the external force. The migration angle as a function of the
orientation of the external force has a Devil's staircase structure. The first
transition in the migration angle was analyzed in terms of a Poincare map,
showing that it corresponds to a tangent bifurcation. Numerical results show
that the limiting behavior for impenetrable obstacles is equivalent to the high
Peclet number limit in the case of transport of particles in a periodic pattern
of solid obstacles. Finally, we show how separation occurs in these systems
depending on the properties of the particles
Crystal structures and proton dynamics in potassium and cesium hydrogen bistrifluoroacetate salts with strong symmetric hydrogen bonds
The crystal structures of potassium and cesium bistrifluoroacetates were
determined at room temperature and at 20 K and 14 K, respectively, with the
single crystal neutron diffraction technique. The crystals belong to the I2/a
and A2/a monoclinic space groups, respectively, and there is no visible phase
transition. For both crystals, the trifluoroacetate entities form dimers linked
by very short hydrogen bonds lying across a centre of inversion. Any proton
disorder or double minimum potential can be rejected. The inelastic neutron
scattering spectral profiles in the OH stretching region between 500 and 1000
cm^{-1} previously published [Fillaux and Tomkinson, Chem. Phys. 158 (1991)
113] are reanalyzed. The best fitting potential has the major characteristics
already reported for potassium hydrogen maleate [Fillaux et al. Chem. Phys. 244
(1999) 387]. It is composed of a narrow well containing the ground state and a
shallow upper part corresponding to dissociation of the hydrogen bond.Comment: 31 pages, 7 figure
Towards More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere
Motivated by the recognition that variation in the optical transmission of
the atmosphere is probably the main limitation to the precision of ground-based
CCD measurements of celestial fluxes, we review the physical processes that
attenuate the passage of light through the Earth's atmosphere. The next
generation of astronomical surveys, such as PanSTARRS and LSST, will greatly
benefit from dedicated apparatus to obtain atmospheric transmission data that
can be associated with each survey image. We review and compare various
approaches to this measurement problem, including photometry, spectroscopy, and
LIDAR. In conjunction with careful measurements of instrumental throughput,
atmospheric transmission measurements should allow next-generation imaging
surveys to produce photometry of unprecedented precision. Our primary concerns
are the real-time determination of aerosol scattering and absorption by water
along the line of sight, both of which can vary over the course of a night's
observations.Comment: 41 pages, 14 figures. Accepted PAS
And in the Darkness Bind Them: Equatorial Rings, B[e] Supergiants, and the Waists of Bipolar Nebulae
We report the discovery of two new circumstellar ring nebulae in the western
Carina Nebula. The brighter object, SBW1, resembles a lidless staring eye and
encircles a B1.5 Iab supergiant. Its size is identical to the inner ring around
SN1987A, but SBW1's low N abundance indicates that the star didn't pass through
a RSG phase. The fainter object, SBW2, is a more distorted ring, is N-rich, and
has a central star that seems to be invisible. We discuss these two new nebulae
in context with rings around SN1987A, Sher25, HD168625, RY Scuti, WeBo1, SuWt2,
and others. The ring bearers fall into two groups: Five rings surround hot
supergiants, and all except for the one known binary are carbon copies of the
ring around SN1987A. We propose a link between these rings and B[e]
supergiants, where the rings derive from the same material in an earlier B[e]
phase. The remaining four rings surround evolved intermediate-mass stars; all
members of this ring fellowship are close binaries, hinting that binary
interactions govern the forging of such rings. We estimate that there may be
several thousand more dark rings in the Galaxy, but we are scarcely aware of
their existence due to selection effects. The lower-mass objects might be the
equatorial density enhancements often invoked to bind the waists of bipolar
PNe.Comment: AJ accepted, 27 page
Multiple light scattering in nematic liquid crystals
We present a rigorous treatment of the diffusion approximation for multiple
light scattering in anisotropic random media, and apply it to director
fluctuations in a nematic liquid crystal. For a typical nematic material, 5CB,
we give numerical values of the diffusion constants and .
We also calculate the temporal autocorrelation function measured in Diffusing
Wave Spectroscopy.Comment: 5 pages RevTeX, 1 postscript figure, to be published in Phys. Rev. E
(Rapid Communication
Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays
Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives
Band-pass filter-like antenna validation in an ultra-wideband in-car wireless channel
Ultra-wide band (UWB) is a very attractive technology for innovative in-car wireless communications requiring high data rates. A designated antenna, which presents a reflection coefficient (S11) matched band comparable to the Band Pass Filters (BPF) normally required at the transducers, plays a positive contribution in this in-car application and was validated for the scenario. The inherited BPF-like response of the antenna relaxes the specification of the front-end BPF components of the transceivers. The in-car propagation channel was modelled and used to validate the BPF-like antenna. For the modelling, a comprehensive set of well-defined measurements (using a standard antenna) were used to set-up the in-car channel simulator and simulated results were used to validate the BPF-like antenna. Additionally, the performance of the UWB radio system is studied and the probability of errors over the communication channel compared using the standard and the BPF-like antenna by predictions
Monotonicity of Fitness Landscapes and Mutation Rate Control
A common view in evolutionary biology is that mutation rates are minimised.
However, studies in combinatorial optimisation and search have shown a clear
advantage of using variable mutation rates as a control parameter to optimise
the performance of evolutionary algorithms. Much biological theory in this area
is based on Ronald Fisher's work, who used Euclidean geometry to study the
relation between mutation size and expected fitness of the offspring in
infinite phenotypic spaces. Here we reconsider this theory based on the
alternative geometry of discrete and finite spaces of DNA sequences. First, we
consider the geometric case of fitness being isomorphic to distance from an
optimum, and show how problems of optimal mutation rate control can be solved
exactly or approximately depending on additional constraints of the problem.
Then we consider the general case of fitness communicating only partial
information about the distance. We define weak monotonicity of fitness
landscapes and prove that this property holds in all landscapes that are
continuous and open at the optimum. This theoretical result motivates our
hypothesis that optimal mutation rate functions in such landscapes will
increase when fitness decreases in some neighbourhood of an optimum, resembling
the control functions derived in the geometric case. We test this hypothesis
experimentally by analysing approximately optimal mutation rate control
functions in 115 complete landscapes of binding scores between DNA sequences
and transcription factors. Our findings support the hypothesis and find that
the increase of mutation rate is more rapid in landscapes that are less
monotonic (more rugged). We discuss the relevance of these findings to living
organisms
- …