18 research outputs found

    UBIAD1 Mutation Alters a Mitochondrial Prenyltransferase to Cause Schnyder Corneal Dystrophy

    Get PDF
    Abstract Background: Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD). SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure

    The transcriptional landscape of age in human peripheral blood

    Get PDF
    Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the 'transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts.Peer reviewe

    Preventing inadvertent drain removal using a novel catheter securement device

    No full text
    Abstract Percutaneous drains have provided a minimally invasive way to treat a wide range of disorders from abscess drainage to enteral feeding solutions to treating hydronephrosis. These drains suffer from a high rate of dislodgement of up to 30% resulting in emergency room visits, repeat hospitalizations, and catheter repositioning/replacement procedures, which incur significant morbidity and mortality. Using ex vivo and in vivo models, a force body diagram was utilized to determine the forces experienced by a drainage catheter during dislodgement events, and the individual components which contribute to drainage catheter securement were empirically collected. Prototypes of a skin level catheter securement and valved quick release system were then developed. The system was inspired by capstans used in boating for increasing friction of a line around a central spool and quick release mechanisms used in electronics such as the Apple MagSafe computer charger. The device was tested in a porcine suprapubic model, which demonstrated the effectiveness of the device to prevent drain dislodgement. The prototype demonstrated that the miniaturized versions of technologies used in boating and electronics industries were able to meet the needs of preventing dislodgement of patient drainage catheters
    corecore