3,290 research outputs found

    Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer

    Get PDF
    The copolymer synthesis process can be affected by failures in the production process or by contaminating compounds such as ketones, thiols, and gases, among others. These impurities act as an inhibiting agent of the Ziegler–Natta (ZN) catalyst affecting its productivity and disturbing the polymerization reaction. In this work, the effect of formaldehyde, propionaldehyde,and butyraldehyde on the ZN catalyst and the way in which it affects the final properties of the ethylene-propylene copolymer is presented by analyzing 30 samples with different concentrations of the mentioned aldehydes along with three control samples. It was determined that the presence of formaldehyde 26 ppm, propionaldehyde 65.2 ppm, and butyraldehyde 181.2 ppm considerably affect the productivity levels of the ZN catalyst; this effect increases as the concentration of aldehydes is higher in the process; likewise, these impurities affect the properties of the final product, such as the fluidity index (MFI), thermogravimetric analysis (TGA), bending, tension, and impact, which leads to a polymer with low-quality standards and less resistance to breakage. The computational analysis showed that the complexes formed by formaldehyde, propionaldehyde, and butyraldehyde with the active center of the catalyst are more stable than those obtained by the ethylene-Ti and propylene-Ti complexes, presenting values of −40.5, −47.22, −47.5, −5.2 and −1.3 kcal mol−1 respectively

    Verificación De La Asignación Vibracional Teórica De DADP Usando Marcaje Isotópico

    Get PDF
    This work deals with the comparison of the theoretical assignment of the DADP vibrational spectrum with the experimental displacements by isotopic labeling. For this, the DADP-C4 and DADP-C2 isotopomers were synthesized from acetone labeled isotopically in the methyl and the carbonyl carbon atoms, respectively. The acetone and DADP-isotopomer compounds were characterized using Raman and infrared spectroscopy. Theoretical assignments were taken from previous studies on the potential energy distribution of a vibrational mode, which provide an approach to the internal coordinates related to each band. The selective isotopic labeling allowed us to approach to the dependence of each band, because the energy of a molecular vibration also depends on the reciprocal mass of the atoms involved. In general, the results showed that some bands assigned experimentally do not coincide with the theoretical assignments by quantum mechanical simulations

    Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission

    Get PDF
    In a homeland security setting, the ability to detect explosives at a distance is a top security priority. Consequently, the development of remote, noncontact detection systems continues to represent a path forward. In this vein, a remote detection system for excitation of infrared emissions using a CO2 laser for generating laser-induced thermal emission (LITE) is a possible solution. However, a LITE system using a CO2 laser has certain limitations, such as the requirement of careful alignment, interference by the CO2 signal during detection, and the power density loss due to the increase of the laser image at the sample plane with the detection distance. A remote chopped-laser induction system for LITE detection using a CO2 laser source coupled to a focusing telescope was built to solve some of these limitations. Samples of fixed surface concentration (500 μg∕cm2) of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) were used for the remote detection experiments at distances ranging between 4 and 8 m. This system was capable of thermally exciting and capturing the thermal emissions (TEs) at different times in a cyclic manner by a Fourier transform infrared (FTIR) spectrometer coupled to a gold-coated reflection optics telescope (FTIR-GT). This was done using a wheel blocking the capture of TE by the FTIR-GT chopper while heating the sample with the CO2 laser. As the wheel moved, it blocked the CO2 laser and allowed the spectroscopic system to capture the TEs of RDX. Different periods (or frequencies) of wheel spin and FTIR-GT integration times were evaluated to find dependence with observation distance of the maximum intensity detection, minimum signal-to-noise ratio, CO2 laser spot size increase, and the induced temperature incremen

    Vibrational detection of acetaminophen in commercials tablets by ATR-FTIR spectroscopy and Chemometrics

    Get PDF
    Acetaminofén (AAP) es un ingrediente activo muy utilizado en muchas preparaciones farmacéuticas. AAP es un analgésico y un fármaco reductor de la fiebre. Generalmente, se utiliza para tratar muchas condiciones tales como dolor de cabeza, dolores musculares, artritis, dolor de espalda, dolores de muelas, resfriados y fiebres. Los métodos estándar más utilizados para la detección química de AAP se basan en técnicas de cromatografía y espectrofotometría, estos métodos generalmente implican una etapa de preparación de la muestra, mientras que los métodos basados en FTIR no. Por lo tanto, los métodos analíticos basados en espectroscopia IR (FTIR) son muy importantes para la industria farmacéutica y agencia policial, dado que permiten obtener de forma fácil y rápida información molecular de una compuesto químico que permite su detección. En un esfuerzo por lograr un procedimiento de identificación fiable para la determinación cualitativa de AAP en diferentes productos farmacéuticos, se propone un tratamiento quimiométrico adicional a los datos ATRFTIR. El método propuesto fue probado en muestras sólidas que contenían AAP. La estadística de rutina de análisis de componentes principales (PCA) produjo excelentes resultados. Los resultados muestran que el sensor multivariado es útil para la detección de AAP en los fármacos ensayados. El uso del método propuesto permite conocer si el fármaco está presente como producto deseado o si se trata de medicamentos falsificados.Acetaminophen (AAP) is active ingredient very used in many pharmaceutical preparations. AAP is a pain reliever and a fever reducer drug. Generally, it is used to treat many conditions such as headache, muscle aches, arthritis, backache, toothaches, colds, and fevers. Standard methods most used for AAP chemical detection are based on chromatography and spectrophotometry techniques, these methods generally imply a sample preparation step, while FTIR based methods do not. Hence, an analytical methods based on IR spectroscopy are very important for the pharmaceutical industry and law enforcement agency, given that allow obtain a way easy and fast molecular information for its detection. In effort for attaining a reliable identification procedure for qualitative determination of AAP in different pharmaceuticals product, an additional chemometrics treatment of ATR-FTIR data is proposed. The proposed method was tested on solid samples containing API. The statistical routine of principal component analysis (PCA) yielded excellent results. The results show that the multivariate sensor is useful for detection of AAP in the drugs tested. Using the proposed method allowed to know if drug is present as desired product or it is counterfeit drugs

    Mid-Infrared Laser Spectroscopy Applications I: Detection of Traces of High Explosives on Reflective and Matte Substrates

    Get PDF
    Mid-infrared (MIR) lasers have revolutionized infrared vibrational spectroscopy, converting an already dominant spectroscopic analysis technique into an even more powerful, easier to use, and quicker turn-around cadre of versatile spectroscopic tools. A selection of applications, revisited under the umbrella of MIR laser-based properties, very high brightness, collimated beams, polarized sources, highly monochromatic tunable sources, and coherent sources, is included. Applications discussed concern enhanced detection, discrimination, and quantification of high explosives (HEs). From reflectance measurements of chemical residues on highly reflective metallic substrates to reflectance measurements of HEs deposited on non-reflective, matte substrates is discussed. Coupling with multivariate analyses (MVA) techniques of Chemometrics allowed near trace detection of HEs, with sharp discrimination from highly MIR absorbing substrates

    Verification of the vibrational theoretical assignment of the DADP using isotopic labelling

    Get PDF
    This work deals with the comparison of the theoretical assignment of the DADP vibrational spectrum with the experimental displacements by isotopic labeling. For this, the DADP-C4 and DADP-C2 isotopomers were synthesized from acetone labeled isotopically in the methyl and the carbonyl carbon atoms, respectively. The acetone and DADP-isotopomer compounds were characterized using Raman and infrared spectroscopy. Theoretical assignments were taken from previous studies on the potential energy distribution of a vibrational mode, which provide an approach to the internal coordinates related to each band. The selective isotopic labeling allowed us to approach to the dependence of each band, because the energy of a molecular vibration also depends on the reciprocal mass of the atoms involved. In general, the results showed that some bands assigned experimentally do not coincide with the theoretical assignments by quantum mechanical simulations.Este trabajo trata sobre la comparación de la asignación teórica del espectro vibracional de DADP con los desplazamientos experimentales por marcación isotópica. Para ello, se sintetizaron los isotopómeros DADP-C4 y DADP-C2, los cuales son isotopómeros parcialmente marcados. DADP-C4 y DADP-C2 fueron sintetizados a partir de acetona marcada isotópicamente en los átomos de carbonos del grupo metilo y carbonilo, respectivamente. La acetona y los compuestos isotopómeros de DADP fueron caracterizados usando espectroscopia Raman e Infrarroja. Las asignaciones teóricas fueron tomadas de estudios previos sobre la distribución de energía potencial de un modo vibracional, el cual proporciona una aproximación a las coordenadas internas relacionadas con cada banda vibracional. La marcación isotópica selectiva nos permitió acercarnos a la dependencia de cada banda, debido a que, la energía de una vibración molecular depende también de la masa recíproca de los átomos involucrados. En general, los resultados mostraron que algunas bandas asignadas experimentalmente no coinciden con las asignaciones teóricas mediante simulaciones mecánicas cuánticas

    Mid-Infrared Laser Spectroscopy Applications in Process Analytical Technology: Cleaning Validation, Microorganisms, and Active Pharmaceutical Ingredients in Formulations

    Get PDF
    Mid-infrared (MIR) lasers are very high-brightness energy sources that are replacing conventional thermal sources (globars) in many infrared spectroscopy (IRS) techniques. Although not all laser properties have been exploited in depth, properties such as collimation, polarization, high brightness, and very high resolution have contributed to recast IRS tools. Applications of MIR laser spectroscopy to process analytical technology (PAT) are numerous and important. As an example, a compact grazing angle probe mount has allowed coupling to a MIR quantum cascade laser (QCL), enabling reflectance-absorbance infrared spectroscopy (RAIRS) measurements. This methodology, coupled to powerful multivariable analysis (MVA) routines of chemometrics and fast Fourier transform (FFT) preprocessing of the data resulted in very low limits of detection of active pharmaceutical ingredients (APIs) and high explosives (HEs) reaching trace levels. This methodology can be used to measure concentrations of surface contaminants for validation of cleanliness of pharmaceutical and biotechnology processing batch reactors and other manufacturing vessels. Another application discussed concerns the enhanced detection of microorganisms that can be encountered in pharmaceutical and biotechnology plants as contaminants and that could also be used as weapons of mass destruction in biological warfare. In the last application discussed, the concentration of APIs in formulations was determined by MIR laser spectroscopy and was cross validated with high-performance liquid chromatography

    Counting the bodies: Estimating the numbers and spatial variation of Australian reptiles, birds and mammals killed by two invasive mesopredators

    Get PDF
    Aim Introduced predators negatively impact biodiversity globally, with insular fauna often most severely affected. Here, we assess spatial variation in the number of terrestrial vertebrates (excluding amphibians) killed by two mammalian mesopredators introduced to Australia, the red fox (Vulpes vulpes) and feral cat (Felis catus). We aim to identify prey groups that suffer especially high rates of predation, and regions where losses to foxes and/or cats are most substantial. Location Australia. Methods We draw information on the spatial variation in tallies of reptiles, birds and mammals killed by cats in Australia from published studies. We derive tallies for fox predation by (i) modelling continental-scale spatial variation in fox density, (ii) modelling spatial variation in the frequency of occurrence of prey groups in fox diet, (iii) analysing the number of prey individuals within dietary samples and (iv) discounting animals taken as carrion. We derive point estimates of the numbers of individuals killed annually by foxes and by cats and map spatial variation in these tallies. Results Foxes kill more reptiles, birds and mammals (peaking at 1071 km−2 year−1) than cats (55 km−2 year−1) across most of the unmodified temperate and forested areas of mainland Australia, reflecting the generally higher density of foxes than cats in these environments. However, across most of the continent – mainly the arid central and tropical northern regions (and on most Australian islands) – cats kill more animals than foxes. We estimate that foxes and cats together kill 697 million reptiles annually in Australia, 510 million birds and 1435 million mammals. Main conclusions This continental-scale analysis demonstrates that predation by two introduced species takes a substantial and ongoing toll on Australian reptiles, birds and mammals. Continuing population declines and potential extinctions of some of these species threatens to further compound Australia's poor contemporary conservation record
    corecore