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1. Introduction 

The detection of harmful materials in bulk and trace levels present in different matrices: 

gases/vapors, liquids, and solids is an important consideration for the development of 

sensors and standoff detection systems for use in National Defense and Security 

applications. Hazardous chemicals such as highly energetic materials (HEM), homemade 

explosives (HME), chemical and biological agents are classified as imminent threats, 

providing terrorists with ways to cause damage to civilians or troops. Chemical warfare 

agents (CWA) are usually classified as skin-damaging, nerve agents and toxins [1]. 

Examples of exposures have occurred since World War I with the development of chlorine, 

phosgene, cyanide and sulfur mustard which were also used in the Iran-Iraq war. In recent 

times, terrorist attempts involving chemical warfare agents have occurred all over the World 

as in the case of Sarin (Japan, 1994) and Ricin (London and Paris, 2003) [2]. Threat 

perception of chemical warfare agents has increased since September 11, 2001 [3,4]. 

Exposure to low levels of these chemical agents can cause respiratory problems, eye 

irritation, choking and blisters. LD50 (mg/kg) values for Nerve agents include Tabun (0.08), 

Sarin (0.01), Soman (0.025) and VX (0.007) [5].  

Most studies that have been published about detection of these compounds are based on 

spectroscopic and chromatographic (GC and HPLC) methodologies [6-11]. Vibrational 

spectroscopy has demonstrated to be valuable for the detection of HEM, HME, CWA and 

Simulants (CWAS) and Toxic Industrial Compounds (TIC). In particular, infrared 

spectroscopy (IRS) and Raman spectroscopy (RS) in various modalities have played unique 

roles in threat compounds detection [6,12-19]. IRS and RS can be employed for detection of 
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Explosives and Chemical Warfare Agents, as well as other chemical and biological threats in 

airports, in military environments, in government buildings and other public safety places. 

Raman Spectroscopy employs a non-invasive approach that provides high resolution and 

specificity. Some applications of IRS and RS includes lab based characterization studies as 

well as forensic field studies of organic and inorganic substances through their vibration 

signatures.  

Optical Fiber Probes (OFP) have been employed in biomedical applications, in 

communications, in coupling instrumentation to sensing probes and other important 

modern applications. Moreover, their uses have been extended to excitation and detection of 

Raman and infrared signals [16, 20]. Fiber optics applications to Raman Spectroscopy can 

take advantage of a favorable excitation radiation distribution within the sample; allowing 

the use of higher laser power levels which, in turn, can yield an elevated signal-to-noise 

ratio (SNR) for a given experiment without increasing the risk of photo-damaging analytes 

[21, 22]. In 2011 Ramírez-Cedeño et al. utilized Optical Fiber Coupled Raman Spectroscopy 

(OFC-RS) to detect hazardous liquids concealed in commercial products [6]. They proved 

that an optical fiber coupled Raman probe was able to discriminate hazardous liquids inside 

consumer products from common drinks. Elliason et al. (2007) have also reported drug and 

liquid explosives detection in concealed in colored plastic containers [23]. 

Recently infrared spectroscopy has shown progress in the use of more powerful IR sources, 

such as Quantum Cascade Lasers (QCL) by incorporating these devices in IR reflectance, IR 

transmission and even in IR microscopy applications [24]. QCL-based setups are being 

developed for in the field applications such as breath analysis, environmental research, 

airborne measurements, security applications, laser-based isotope ratio measurements, and 

many others. In particular, for security applications, optical methods are advantageous 

because of their capability for remote and standoff detection [14, 25, 26]. Due to 

improvements in QCL development, mid infrared lasers operating at room temperature with 

high output powers in the CW regime are commercially available and make it possible to set 

up a ruggedized system that allows sensing of explosives and others materials outside the 

laboratory and the ability to enter real world scenarios. With laser based standoff 

spectroscopy, the detection distance can be a few meters to tens of meters. Because of the 

inverse square dependence of light intensity, larger distances require high power, collimated 

light sources such as lasers. For homeland security applications such as detection of suicide 

bombers or improvised explosive devices, a distance of 50-100 m is generally sufficient. 

In this chapter we illustrate the usefulness of incorporating powerful statistical routines to 

all traditional chemistry disciplines: Chemometrics is the application of statistical tools to 

plan, execute and analyze experiments in chemistry. To illustrate the power of 

Chemometrics techniques to analyze experiments in chemistry we have chosen three case 

studies, all involving identification, quantification, discrimination and classification of 

chemical threats in different matrices from vibrational spectroscopy multivariate data.  

In the first case study a remote Raman detection study was performed for quantification of 

HEM such as pentaerythritol tetranitrate (PETN) present in different mixtures. The remote 
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measurements were carried out at 10 m by employing a frequency-doubled 532 nm Nd:YAG 

pulsed laser as excitation line, the quantification study was performed by using partial least 

squares regression analysis (PLS), Interval-PLS (iPLS) and Synergy-PLS (siPLS) as 

chemometrics tools to achieve the best correlation between the remote Raman signal and the 

concentration (%) of PETN explosive in a mixture with pharmaceutical compound.  

In the second case study discussed, Optical Fiber Coupled Raman Spectroscopy (OFP-RS) 

was employed at 488 nm excitation wavelength for detection of a Chemical Warfare Agent 

Simulant (CWAS): triethyl phosphate (TEP) inside different commercial bottles: green-

plastic, green-glass, clear-plastic, clear-glass, amber-glass and white plastic. Aqueous 

solutions were also used to discriminate on various bottle materials in commercial beverage 

products.  

In a third case study a Fourier Transform infrared interferometer with MCT detector was 

used for recording vibrational infrared signals from nitroaromatic and peroxide explosives 

in the gas phase. Furthermore, a dispersive IR HEM detection system using a quantum 

cascade laser was used to record MIR spectral signals of 2,4,6-trinitrotoluene, pentaerythritol 

tetranitrate and cyclotrimethylenetrinitramine on travel baggage surfaces. Several models 

were generated with and without preprocessing throughout MIR spectrum. 

2. Description of methodologies 

Explosives compounds employed in the studies illustrated were pentaerythritol tetranitrate 

(PETN) cyclotrimethylenetrinitramine (RDX), triacetone triperoxide (TATP), 2,4-

dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT) were synthesized in the laboratory 

according to methods described by Urbanski [27] and pharmaceutical active compound: 

acetaminophen (APAP) was purchased from Aldrich-Sigma Chemical Co. (Milwaukee, WI). 

Powder mixtures were prepared employing the both compounds (PETN and APAP) 

mentioned above and the compositions of PETN in the mixtures was varied from 1 to 34% 

w/w.  Components of the mixtures were carefully weighed and mixed using an agate mortar 

ensuring homogeneity throughout the sample with a total weight of 200 mg.  

 

Figure 1. Commercial bottles (glass and plastic) used to TEP detection using Optical Fiber Coupled 

Raman spectroscopy. 
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Figure 2. Microscopic Views of PETN on travel baggage substrates; zoom used was 10x and 50x. 

A chemical warfare agent simulant: (CWAS) triethyl phosphate 99% (TEP) from Acros 

Organics (New Jersey, USA) was used to demonstrate the detection and quantification 

capabilities of this kind of compound by Optical Fibers Coupled Raman spectroscopy. Several 

formulations were made with the stimulant in their commercial containers: Snapple® Kiwi-

Strawberry (Snapple Group USA), Pepsi (PepsiCo Inc., USA), Mountain Dew® (PepsiCo Inc., 

USA), Heineken® (Mendez & Company, PR), Mott’s apple juice® (Mott’s LLP., Rye Brook, 

NY) ,  Leche Suiza® Low Fat Grade A (Suiza Dairy Corp., Puerto Rico) and Malta India® (PR 

Brewing Co., Mayaguez, PR). The containers can be seen in Figure 1.  

For gas phase measurements of 2,4-DNT and TATP using infrared spectroscopy vapors 

were collected in a gas cell (10 cm long and 3.5 cm diameter) by slowly heating the sample 

to generate vapors. Finally, traces of PETN, TNT and RDX were placed on travel baggage 

surface with size of 1 in2. Figure 2 shows a view of how PETN was deposited on travel 

baggage substrates at different surface concentration. Figure 3 shows a summary the 

experiments carried out using vibrational spectroscopy techniques such as infrared and 

Raman. This figure shows the modalities used, the target tested and the chemometrics 

models utilized. 

For detection of PETN mixed with APAP, Raman spectra of mixtures were acquired by 

employing a Remote Raman system. This system has been described in detail previously 

[16]. The prototype was modified using a Headwall Photonics Raman Explorer™ 

spectrograph with optical layout for 532 nm (Headwall Photonics, Inc.) instead of the Andor 

spectrometer. The remote Raman system consisted of a MEADE ETX-125 Maksutov-

Cassegrain telescope (125 mm clear aperture, 1900 mm focal length f /15). The reflecting 

collector was coupled to the Raman spectrometer with non-imaging, 200 m diameter 

optical fiber (model SR-OPT-8024, Andor Technology, Belfast, Northern Ireland). A 

frequency-doubled 532 nm Nd:YAG pulsed laser system (Quanta Ray INDI Series, 

Newport-Spectra Physics, Mountain View, CA) was used as the excitation source. The 

Blank 10x

0.51 µg/cm2 50x

0.51 µ  g/cm  2 10x

Blank 50x

8.53 µg/cm2 10x

8.53 µg/cm2 50x  
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maximum energy/pulse of the laser at 532 nm was 25 mJ, and it operated at a repetition rate 

of 10 Hz. The pulse width was approximately 5-8 ns, and the beam divergence was less than 

0.5 mrad. A gateable, intensified CCD detector (iStar ICCD camera, Model DH-720i-25F-

03, Andor Technology, Belfast, Northern Ireland) was used as the photon detector. Andor 

Technology Solis software for spectroscopic, imaging and time-resolved studies was used 

for spectral data acquisition and processing from the intensified and gated CCD detector. 

Using this software, the data could be acquired in both imaging and spectroscopic modes.  

In this experiments, each mixture was placed into a stainless steel sample holder of 0.6 cm in 

diameter where 30 ft·lb of pressure was applied to generate a tablet. Remote Raman spectra 

of mixtures were measured at a target at telescope standoff distance of 10 m, in the Raman 

Shift region 450-3000 cm-1 using an pulsed laser operating at 532 nm excitation line with a 

constant energy of 25mJ/pulse (at head) and 100 pulses were applied to achieve spectra with 

good Signal to Noise. A total of 10 spectra were collected for each mixture acquiring around 

56 spectra in the specific Raman shift range. 

 

Figure 3. General scheme of experiments using IR and Raman vibrational spectroscopy. 

In the detection of TEP chemical warfare simulant in commercial bottles, Raman 

experiments were performed with a custom built setup (Figure 4) using the strong blue 

excitation line from an argon ion laser INNOVA 310/8 from Coherent, Inc. at 488.0 nm. The 

first strand of optical fiber (non-imaging, 600 µm diameter, model AL 1217, Ocean Optics, 

Inc.) as well as the second (200 µm diameter, model SR-OPT 8024, Andor Technologies Inc.) 

were used to couple the Raman probe to which a set of laser line filter (to clean satellite 

lines) and Semrock RazorEdge™ edge filter was used to filter the Rayleigh scattered light. 

An Andor Technologies spectrograph: Shamrock SR-303i (aperture: f/4; focal length: 303 

mm; wavelength resolution: 0.1 nm or 4.2 cm-1 at the excitation wavelength) equipped with 

a 1200 grooves/mm grating was used to analyze the Stokes scattered light. A high 

performance, back thin illuminated CCD camera (Andor Technologies model # DU970N-
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UVB) with quantum efficiencies of 90% (200 cm-1) to 95% (3600 cm-1) served as light detector 

(Figure 4) and calibration was performed using cyclohexane.  Detection was performed with 

a light source in order to be carried out in the high-background environment conditions. In 

this experiment, six different bottle materials: clear-glass, green-glass, brown-glass, clear-

plastic, white-plastic and green-plastic were used to measure the amount of simulant 

(triethyl phosphate) within the container. Mixtures ranged from 0% to 100% (v/v) of 

simulant and water, simulant and commercial beverage product were analyzed.   

 

Figure 4. Experiment setup for detection of chemical warfare simulant in commercial bottles. 

 

Figure 5. Schematic diagram of experimental setup used in the IR detection. Traces of explosives in gas 

phase were dragged by air flow and transported to a gas cell for detection. 
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The IR equipment used for the experiments was a model IFS 66v/S interferometer (Bruker 

Optics, Billerica, MA). For the experiments described, the system was equipped with a 

DTGS detector and a potassium bromide (KBr) beamsplitter. A spectroscopic measurement 

averaged 20 scans at a resolution of 4 cm-1 using OPUS Version 4.2 software in the range of 

7500 – 400 cm-1. Target chemicals were TATP, 2,4-DNT and 2,4,6-TNT. Second, an EM-27 

Open Path FT-IR interferometer (Bruker Optics, Billerica, MA) was used to obtain the IR 

spectral information of gas phase TATP samples with a (TE) cooled MCT detector. Third: 

Quantum Cascade Laser (QCL) based dispersive IR spectrometer LaserTune™ (Block 

Engineering, Marlborough, MA) was used to obtain the IR spectral information of TATP 

samples. An Agilent 6890 gas chromatograph (GC) coupled to an Agilent 5893 mass 

selective detector (MSD) with a capillary column: HP-5 MS 5% phenyl methyl siloxane, 

Length: 30.0 m, 250.0 µm in diameter and 0.25 µm of film thickness was used for detecting 

the presence of explosive TATP, 2,4-DNT and 2,4,6-TNT in the gas phase. 

Figure 5 shows a schematic diagram of the experimental setup used in the investigation. 

Samples of 100-300 µg/cm2 of explosives were placed on the bottom of a 500 mL Erlenmeyer 

flask at the position labeled (1) in Figure 5. A flow of dry air (1-16 mL/s) at temperatures of 

0-38°C was used to transfer the solid explosives to the gas phase. The measurements as 

function of temperature were done in two forms, scanning the range of temperature and 

fixed temperature point measurements. Traces of explosives in gas phase were dragged 

from the surface by the air flow and transported to an IR gas cell for detection. Spectra were 

recorded using the instrument first at 4 cm-1 of resolution and 25 scans were used for the 

experiments. A total of 1089 spectra of air with 2,4-DNT, 1194 spectra of air with TATP and 

2200 spectra of air were recorded to generate the models. On the OP EM-27 active mode 

experiments were carried out at lab temperature (25oC) at 30 scans and 4 cm-1 resolution. 

The spectral range used was from 700 to 1600 cm-1. Experiments using QCL LaserTune™ 

active mode experiments were carried out at lab temperature of 20 °C at 1 spectrum and 4 

cm-1 resolution. The spectral range used was from 830 to 1430 cm-1. The presence of TATP in 

air was determined by GC-MS, and the concentration of 2,4-DNT in air for different flow 

conditions and temperatures were calculated by calibration curves from GC-µECD. Finally, 

explosive traces (PETN, TNT and RDX) were deposited on travel baggage of 1 in2 size of 

and analyzed with the QCL spectrometer.  

3. Chemometrics to vibrational spectral analysis 

The automation and computerization of laboratories have been carried out with various 

important consequences. One of them is the rapid acquisition of large amounts of data. 

However, it is well know that acquiring such large amount of data is far from to providing 

appropriate answers quicker. Obtaining vibrational spectroscopy multivariate data is not 

synonymous with possessing vibrational information. The later must be interpreted and 

placed in context to convert it into useful information for the user. Chemometrics is the field 

of chemistry that provides the user with the required tools to enable that capability.  

A great deal of chemometrics tools have been developed and tested. The most used of these 

tools to identify, quantify and classify data sets are those that make use of principal 
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components analysis (PCA), partial least squares (PLS), discriminant analysis (DA), and 

their combined usage: PLS-DA and hierarchical cluster analysis (HCA). PCA transforms a 

set of variables into fewer variables (called factors, rank, dimensions or principal 

components) which contain most of the information (variance) of the initial data set [28-31].  

 

Figure 6. Simplified scheme for a PCA analysis. 

The PCA algorithm seeks to save the information from a large number of variables in a 

small number of uncorrelated components, with minimal loss of information. The main 

reasons for performing a PCA are: reduction of the number of variables to fewer dimensions 

that contain as much information as possible and have uncorrelated dimensions (used to 

avoid multi-collinearity in multiple regressions, among other things).  An important method 

for qualitative analysis of spectral data is principal component analysis. PCA is a method for 

the investigation of the variation within a multivariable data set. The first step in PCA is to 

subtract the average value or spectrum from the entire data set, this is called mean 

centering. The largest source of variation in the data set is called principal component PC1. 

The 2nd largest source of variation in the data, which is independent of PC1, is called PC2. 

Principal components form a set of orthogonal vectors. For each one of the data points, the 

projection of the data point onto the P1 or P2 vector is called a score value. Plots of sample 

score values for different principal components, typically P1 versus P2 are called score plots. 

Score plots provide important information about how different samples are related. 

Principal component plots, also called loading plots, provide information about how 

different variables are related to each other. In practical cases, PCA uses a single X matrix 

which is represented by the infrared spectra. PCA is a purely qualitative analysis (does not 

give a quantitative value that establishes how different are a spectral dataset) to visualize if 

there is variability between a set of IR spectra. PCA can thus also be used to detect the 

presence of outliers. Figure 6 shows a simplified PCA scheme [28-29]. 

Partial least squares (PLS) regression is a quantitative spectral decomposition technique that 

is closely related to PCA regression. The importance of PLS is that it is used to design and 

build robust calibration models for multivariate quantitative analysis. PLS actually uses the 

concentration information during the decomposition process. This causes spectra containing 

higher constituent concentrations to be weighted more heavily than those with lower 

concentrations. The main idea of PLS is to get as much concentration information as possible 
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into the first few loading vectors (number of component, factors, ranks or principal 

components). PLS regression consists of two fundamental steps. First, to transform the X 

predictive matrix (spectra) of order n × p (n = number of samples and p = number of 

variables: cm-1 or nm), in an matrix of components or latent variables uncorrelated, T = (T1, 

..., Tp) of order n × p, called PLS components, using the Y response vector (concentrations) 

of order n × 1; this contrasts with the principal component analysis in which the components 

are obtained using only the X predictive matrix . Second, to calculate the estimated 

regression model using the Y response original vector as predictive, PLS components. The 

dimensionality reduction can be applied directly on the components as they are orthogonal. 

The number of PC required for the regression analysis must be much smaller than the 

number of predictors. There is a number of ways of expressing these, a convenient one being 

(Eq.1 and 2) [29]: 

ࢄ  = ࡼ.ࢀ +  (1)    ࡱ

ࢉ  = .ࢀ ࢗ +  (2)    ࢌ

Figure 7 illustrates a simplified scheme for PLS: X represents the experimental 

measurements (e.g. spectra) and c (or Y) the concentrations. The first equation above 

appears similar to that of PCA, but the scores matrix also models the concentrations, and the 

vector q has some analogy to a loadings vector. The matrix T is common to both equations. E 

is an error matrix for the X block and f an error vector for the c block. The scores are 

orthogonal, but the loadings (P) are not orthogonal, unlike in PCA, and usually they are not 

normalized. 

 

Figure 7. Simplified scheme for a PLS transformation. 

Chemometrics techniques have improved the last years in order to save time and 

computational resources in different models to be used without compromising the quality of 

results. In 2000 Norgaard and co-workers [32,33], developed different algorithms useful in 

Chemometrics field called interval partial least squares (iPLS) and this tool was presented 

for use on NIR spectral data. Recently, this new graphically oriented local modeling 

procedure has been implemented in many areas of research such as petrochemicals, 

pharmaceutical and beverage industry [34-36]. 
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The principle of the iPLS is to optimize the predictive capability of PLS regression models 

and to support in interpretation. This algorithm which develops local PLS models on 

equidistant subintervals of the full-spectrum region. Its major objective is to provide an 

overall perspective of the significant information in different spectral subdivisions, thereby 

focusing on important spectral regions and removing interferences from other regions. The 

sensitivity of the PLS algorithm to noisy variables is highlighted by the informative iPLS 

plots [32]. For synergy interval PLS (siPLS), the basic principle of this algorithm is the same 

as iPLS first, it is to split the data set into a number of intervals (variable-wise), next, to 

develop PLS regression models for all possible combinations of two, three or four intervals. 

Thereafter, RMSECV is calculated for every combination of intervals. The combination of 

intervals with the lowest root mean square error of cross-validation (RMSECV) is selected.   

Finally, cluster analysis is the name given to a set of techniques that seeks to determine the 

structural characteristics of multivariate data sets by dividing the data into groups, clusters, 

or hierarchies. For cluster analysis, each sample is treated as a point in an n-dimensional 

measurement space. The coordinate axes of this space are defined by the measurements 

used to characterize the samples. Cluster analysis assesses the similarity between samples 

by measuring the distances between the points in the measurement space. Samples that are 

similar will lie close to one another, whereas dissimilar samples are distant from each other 

[28]. 

In this chapter, remote Raman detection experiments were performed to quantify HEM such 

as PETN present in mixtures with non-HEM. The remote measurements were carried out at 

10 m employing a frequency-doubled 532 nm Nd:YAG pulsed laser as excitation source. The 

quantification study was performed by using PLS, iPLS and siPLS as chemometrics tools to 

achieve the best correlation between the remote Raman signal and the concentration (%) of 

PETN explosive in a mixture with pharmaceutical compound. Discrimination of chemical 

warfare agent simulant (CWAS) TEP concealed within commercial beverage bottles using 

Optical Fiber Coupled Raman Spectroscopy with the use of different chemometrics 

techniques such as PLS, PLS-DA. Finally infrared spectroscopic information analysis using 

Chemometrics was designed and implemented in the detection of HEM: 2,4-DNT, TATP, 

PETN and RDX, present at trace level on surfaces and in air were analyzed by 

Chemometrics Enhanced Vibrational Spectroscopy. 

4. Multivariate Detection and Quantification from Vibrational Spectra 

4.1. Remote raman experiments 

Different preprocessing methods such as vector normalization (VN), mean centering (MC), 

auto scaling (AS), multiple scattering correction (MSC), standard normal variate (SNV) and 

first and second derivatives have been developed to improve a good multivariate 

quantification. The 56 remote Raman spectra taken from PETN detection in mixes with 

APAP were randomly split into two groups: a first group with the 70% of the data for 

calibration and cross validation (training set) and a second group for external validation 

(test set) formed by the remaining 30% of the data. The quantitative model was performed 
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by using chemometrics tools, such as PLS, iPLS and siPLS. The PLS program used was from 

PLS-ToolBox™ (Eigenvector Research Inc.) for use with MatLab™. The iPLS and siPLS 

algorithms used in this work were carried out by employing iToolbox™, (downloaded from 

http://www. models.kvl.dk). The performance of the final PLS, iPLS and siPLS models were 

evaluated according to the root mean square error of cross-validation (RMSECV), a leave-

one-sample-out cross-validation method and the predictive ability of the models were 

assessed by the root mean square error of prediction (RMSEP) and the correlation coefficient 

(R). In general for all the PLS models RMSECV were calculated as follows: 

ܸܥܧܵܯܴ  = ඨ		∑ (௖೛ି௖೔)మ೙೎ೌ೗೗೔సభ௡೎ೌ೗     (3) 

Where ci and cp are the experimental and predicted concentration, respectively, of the ith 

calibration sample when situated in a left out segment, ncal is the number of calibration 

samples in the training set. The number of PLS components included in the model is 

selected according to the lowest RMSECV. This procedure is repeated for each of the 

preprocessed spectra. For the test set, the root mean square error of prediction (RMSEP) is 

calculated as follows: 

ܲܧܵܯܴ  = ට		∑ (௖೔ି௖೛)మ೙೟೐ೞ೟೔సభ௡೟೐ೞ೟   (4) 

The best model with the overall lowest RMSECV will be selected as final model. Correlation 

coefficients between the predicted and the true concentration are calculated for both the 

calibration and the test set, which are calculated as follows from Equation 5, where  ܥపഥ  is the 

mean of the experimental measurement results for all samples in the train and test sets. 

 ܴ = ට1 − 		∑ (௖೛ି௖೔)మ೙೔సభ∑ (௖೔ି௖ഢഥ)మ೙೔సభ      (5) 

The implementation of new methodologies for enhanced detection of hazardous 

compounds such as explosives is always attractive for many countries principally for 

defense and security applications. Terrorist employ different ways to pose threats and make 

illegal acts against military and civilian people. According to this situation our study is 

focused on detection of explosives present in mixture prepared intentionally with a 

pharmaceutical product by employing remote Raman detection and chemometrics tools. 

Remote Raman spectra of PETN, APAP in mixtures of them are illustrated in Figure 8. The 

results show that mean centering (MC) pre-processing method was the most successful 

method for correcting background and was selected for construction of further models 

because they presented small improvement in RMSEC. 

The full spectrum was split in 20 independent intervals and the RMSECV values for PLS 

models constructed with different intervals is shown in Figure 9. Models with no intervals 

were better than PLS models with all variables (dotted in line) and the intervals 6 (1185.2-

1328.9 cm-1), 9 (1619.8 -1755.4 cm-1), and 19 (2878 -2988.4 cm-1), presened the lowest RMSECV 

values where more variability exists. These values are shown in Table 1. The number of 
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latent variables required for the models obtained using different intervals is the numbers 

shown inside the rectangles. 
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Figure 8. Remote Raman spectra of PETN, APAP and mixture of them, collected at 10 m of target to 

collector distance employing 532 nm laser with 100 pulses of 25 mJ/pulse. 

 

Figure 9. RMSECV values for PLS models obtained for the 20 different intervals (bars) used in iPLS 

models. The horizontal dotted line represents the RMSECV value for the PLS model with all variables. 

Numbers inside the rectangles are the optimal number of latent variables. 
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Models LVa Intervals NVb 
RMSEC

V (%) 

RMSEP 

(%) 
RCV RP 

PLS 6 All 730 1.8 2.2 0.978 0.979 

iPLS 3 6 37 2.0 2.8 0.986 0.976 

3 9 37 2.5 3.1 0.976 0.969 

3 19 36 2.7 2.4 0.972 0.988 

siPLS 7 3,9,19 110 1.4 1.8 0.993 0.992 

a Latent variable  b Total number of variables. 

Table 1. Full-cross-validated PLS, iPLS, and siPLS models for prediction of PETN in the range 1.0–

34.0% Remote Raman spectra. All models are based on MC data. 

In synergy interval-PLS (siPLS) model calibration, the number of intervals was also 

optimized according RMSECV values. Table 1 shows the results of siPLS model calibration 

when the spectra were split into different number of intervals. The optimum siPLS model 

was obtained with the combination of 3 intervals (3, 9 and 19) and 7 PLS components. The 

lowest RMSECV was 1.4, compared with RMSECV values obtained for PLS model with all 

variables and iPLS models. According to the statistical results illustrated in Table 1, it is 

important to establish that iPLS or siPLS models with 4 or more intervals (data not shown) 

including intervals 10-18 were explored. These intervals correspond to noisy areas which 

were not eliminated in order that the models could choose the spectral region of larger 

variability. The capability of prediction of siPLS models was better when compared to the 

other models As shown in the correlation plots in Figure 10, there is a good relationship 

between the True and Predicted concentration (%) for PETN, with RCV values of 0.993. This 

can also be appreciated by the good prediction of the test set of samples with values of 

RMSEP of 1.8% for the corresponding explosives. The final model separated the vibrational 

spectra into 20 intervals, 7 latent variables were used and the intervals number 3, 9 and 19 

were combined The selected intervals included regions of 724.2 - 876.7cm-1,1619.8-1755.4 cm-1 

and 2878 -2988.4 cm-1, The first  Raman shift region correspond to NO2 scissoring mode and 

O-N stretching band; the second region is relevant for NO2 asymmetric stretching  mode 

and C=O stretching band; the third region represents the C-H stretching mode [37-39]. 

 

Figure 10. Predicted vs. True PETN concentration for siPLS model using 3, 9, and 19, intervals and 7 

latent variables. 
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4.2. Optical fiber probe raman spectroscopy experiments 

In the optical fibers coupled Raman spectrum of TEP, shown in Figure 11, the CWAS has 

characteristics peaks at 733 cm−1 (PO3 symmetric stretching mode), 813 cm−1 (PO3 

asymmetric stretch), 1032 and 1098 cm−1 (C–O stretch), 1162 cm−1 (CH3 rocking) and 1279 

cm−1 (P–O symmetric stretch) [6]. Mixtures of TEP with commercial liquids were measured 

in their corresponding commercials bottles.  TEP concentration varied from 0 to 100 (%v/v). 

In Figure 12, TEP Raman spectra are shown for different bottle materials. At all 

concentrations, the TEP characteristic peaks could be distinguished within the different 

types of materials of the container with the exception of brown glass and white plastic. 

These two bottle materials had lower transmittance in the 200 to 1400 cm-1 region and TEP 

characteristic peaks in the 2700 to 3200 cm-1region.  UV-VIS spectra (data not shown) show 

the increased absorbance in bottle materials such as white plastic and amber glass (Malta™).  

This confirms nature of the low intensity Raman peaks in the region (200-1400 cm-1) shown 

in Figure 12.  When light scatters turbid materials, such as amber glass or white plastic, the 

material is absorbing or blocking the light when compared to clear glass and clear plastic.  

Thickness of the bottle material and coloration also play a role in absorbance and transmission. 

The high intensity peak at 2300 cm-1 corresponds to the background light (mercury vapor from 

fluorescent lamps).  This peak is shown with higher intensity in Raman spectra of brown glass 

and white plastic in comparison to the rest of spectra due to the increase in integration time for 

these two bottle materials.  All bottle materials were subject to background light in order to 

simulate real-time conditions found in military, airport and other environments where a light 

source is involved.  This analysis is based on increased absorbance shown in the UV-VIS 

Spectra for different bottle materials (data not shown). 

  

Figure 11. Raman vibrational spectrum of TEP excited at 488 nm. 

Calibration models were performed with PLS regression model to distinguish between the 

samples that contain TEP in aqueous solutions compared to the solutions with TEP and the 

commercial product.  In Figure 13, eight PLS regression models are chosen in order to show 

the marked difference between the best and the worst regression model, each of these with 
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and without pre-processing steps.  Since integration times were normalized for each bottle, 

Limits of Detection were similar with the exception of amber/brown glass (Malta™). The 

aqueous solutions show a better R2 values than the mixtures with the commercial product. 

For clear glass (Snapple™), the R2 value is 0.9925 for aqueous solutions compared to 0.9747 

for the mixtures with the commercial product. The R2 values for Malta™ in aqueous 

solutions showed a significant increase with optimization (0.4193 without preprocessing and 

0.9508 with optimization). However, optimization with Malta™ shows a lower R2 value 

0.7646 compared to 0.8047 without preprocessing.   

 

Figure 12. Raman spectra of Triethyl Phosphate in various types of bottle materials 

It is clear that the R2 values increase in PLS regression models for aqueous solutions since 

water does not present strong signatures in Raman Spectroscopy. Every other PLS 

regression model (green plastic, green glass, clear plastic, clear glass, and white plastic) in 

aqueous and beverage solution presented nearly similar limits of detection.  Each of these 

limits improved with their respective preprocessing step (vector normalization, standard 

normal variate and mean centering).  With the help of integration time for each bottle 

material, normalization was achieved with the limits of detection and root-mean-squared 

error cross-validation (RMSECV).  These values were found as acceptable in an average 

between the best models of approximately 2.5%. The Limits of Detection for PLS methods 

were estimated using the equation 6 [40]: 
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 LOD=Δ (,,) x RMSEC(√1+h0)    (6) 

Root mean squared error of calibration (RMSEC) was obtained from the square fit errors 

[(cpredicted - ctrue)2/]1/2  where the sum extends to all samples of the calibration set. The degrees 

of freedom were then calculated as  = n - F - 1 where F is the number of latent variables and 

n is the number of samples in the set. The distance of the predicted sample from zero 

concentration to the calibration set’s mean is the leverage h0. Ultimately, Δ (,,) 

corresponds to a statistical parameter that notices the  and  probabilities of falsely stating 

presence/absence of the chemical warfare agent stimulant.  Since    25, we used  = 3.4 for 

the LOD. LOQ values as per Eq. 7 were studied at a concentration with a Relative Standard 

Deviation (RSD) of 15% as stated by Felipe-Sotelo et al. [40]:  

 LOQ = 100x(RMSECx(1 + h଴)଴.ହRSD(%)      (7) 

 

Figure 13. A) PLS models of TEP in aqueous solution in Snapple™ container (clear glass materials) 

with (vector normalization) and without preprocessing.  B) PLS models of TEP in aqueous solution 

inside Malta™ container (amber glass materials) with (mean centering, standard normal variate) and 

without preprocessing. C) PLS models of TEP mixtures with the commercial product Snapple™ (clear 

glass materials) with (vector normalization) and without preprocessing.  D) PLS models of TEP 

mixtures with the commercial product Malta™ (amber glass materials) with (mean centering) and 

without preprocessing. 

Comparing limits of detection (Figure 13) the same integration times were used for aqueous 

and commercial beverage bottle solutions.  A and B (Figure 5) show Snapple™ and Malta™ 

in aqueous solutions with TEP. Figures 13C and 13D in the same figure show mixtures of 



Multivariate Analysis in Vibrational  
Spectroscopy of Highly Energetic Materials and Chemical Warfare Agents Simulants 177 

TEP with commercial products and with less data (5, 30, 70 and 0 %v/v) due to limited time. 

Snapple has lower limits of detection which is favorable for detection of chemical warfare 

stimulants in commercial bottles made out of various materials.  When comparing limits of 

detection for aqueous solutions versus solutions with commercial beverage product inside 

commercial bottles, limits of detection are considerably lower.  R2 prediction values were 

higher in aqueous solutions since water does not present significant Raman signal.  Limits of 

detection were found as low as 1 percent for white plastic.  Optimization also improves or 

lowers the limits of detection as shown in Figure 13.  

Table 2 shows Limits of Detection and Quantification (LOD and LOQ respectively) for 

various commercial beverage bottle solutions with TEP for the best models. Preprocessing 

options include Vector Normalization (V.N.), No preprocessing (N/A), Mean Centering 

(M.C.), Constant Offset Normalization (C.O.N.), First Derivative (F.D.) and Multiplicative 

Scatter Correction (M.S.C).  Higher limits of detection and quantification for amber glass 

and clear plastic were presented due to their dark coloration in bottle material (amber) and 

commercial beverage product (Pepsi and Malta).  An unexpected low value for limits of 

detection and quantification for white plastic was observed.   This may be due to the low 

amount of trials (5 instead of 10 for 5, 30, 50 and 70 (%v/v of TEP) as was done with other 

bottle materials due to the high integration times for this material. Even though TEP, a 

surfactant agent, did not present a homogeneous solution with milk, integration times were 

normalized in order to obtain a better model of a clear linear regression with an R2 value of 

0.9987 and excellent limits of detection of 0.01(1%). 

 

COMMERCIAL BEVERAGE MIXTURES 

 
Green GlassWhite Plastic

Amber 

Glass
Clear Glass Clear Plastic Green Plastic 

LOD (%) 3 1 26 4 22 3 

LOQ (%) 8 3 77 11 66 9 

Preprocess V.N. V.N. N/A M.C. + V.N. C.O.N. M.S.C. + M.C. 

AQUEOUS MIXTURES 

LOD (%) 11 7 16 8 8 4 

LOQ (%) 33 21 48 22 25 12 

Preprocess V.N. F.D. + V.N. F.D. + V.N. V.N. V.N. N/A 

Table 2. Limits of Detection and Quantification for the PLS models of TEP in commercial beverage 

bottles and aqueous mixtures along with their respective preprocessing methods. 

4.3. Gas phase infrered spectroscopy experiments 

Multivariate calibration methods such as Partial Least Squares (PLS) models can be 

formulated as a regression equation [41, 42]. The equation in metrical form is Y = XB, where 
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B is computed as B = W(PTW)-1 QT  and W is the matrix of weights of X, Q is the loadings 

matrix of Y, and P is the X loadings matrix. In this study, the Y matrix represents the 

dependent variables but this is changed from continuous to discrete variation, and contains 

information about different classes of objects [43-45], it is a simple two states function: 1 

represents the condition for the presence of explosive in the sample and 0 stands for the 

absence of explosive in the sample analyzed. By these means it will be possible to decide if 

an explosive substance is present or not in a sample. The values originating from the 

analysis: wavenumber range or parts of spectra are the independent variables (X matrix). In 

this study the loading vectors or number of component (B matrix) were used for 

independent variables in the DA. 

TATP and 2,4-DNT in air were detected using FTIR spectroscopy. At trace levels, the 

vibrational signatures are not easily perceptible. Vibrational signatures of explosive can be 

confused with vibrations arising from the background air components. Thus the first task 

was to determine the possible interference of the two spectra.  Figures 14a and 14b show the 

spectra of flowing gas that contains TATP and 2,4-DNT traces. The characteristic infrared 

signals of TAPT at 1200 cm-1 and at 1550 cm-1 for 2,4-DNT can be observed in Figure 14 

which confirms the presence of these compounds in air. Linear Combination Analysis in the 

form of Partial Least Squares (PLS) was calculated for all FTIR spectra (7500-600 cm-1). Two 

and four vectors were required to find the perturbation produced by TATP and 2,4-DNT 

respectively, on the normal flowing air IR spectrum. The discriminating function used was a 

two position switch type function: On – Off (Yes/No). The nomenclature in the DA was for 

classification of samples in terms of “Disc-1=TATP present” or “Disc-0 = TATP not present” 

in air, for TATP; and “Disc-1 = 2,4-DNT present” or “Disc-0 = 2,4-DNT not present” in air, 

for 2,4-DNT. The results were presented in the form of histogram, where the y-axis is the 

frequency and x-axis is the discrimination function. Also the prediction of new sample was 

present in this form, (Figures 15 and 16) in these graphs, the improvement of models, when 

vectors are added successively is observed. 

 

Figure 14. FTIR vibrational spectra of gas explosive in air:  a. TATP and b. 2,4-DNT traces. 

The best discriminant function was selected based on statistical significance (p) and the 

percentage of cases correctly classified (PCCC) [46]. The validation was done by internal 

jackknifing validation and external validation. Internal validation: in this method, each 

spectrum was successively removed from the data set, and then it was discriminated from a 
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new model built from the remaining spectra. This procedure was done for each one of the 

spectra in the data set, and the predicted discriminations were then compared with the 

experimental observations. The generated percentage of cases correctly classified is called 

the cross-percentage of cases correctly classified (PCCCC). External validation: before 

making the model, 100 spectra of air, 100 spectra air with TATP and 50 spectra air with 2,4-

DNT were taken from the data set randomly. These spectra were analyzed by the validation 

model. 

 

Figure 15. Histogram for discrimination models of TATP and external validation. 

For the PCA analysis of TATP in air spectra were recorded using the EM-27 and the 

LaserScope™ instruments. A total of 60 spectra were recorded from clean air and 120 

spectra from air with TATP present using EM-27 and 35 spectra were recorded from clean 

air and 30 spectra from TATP present in air using LaserScope™. All PCA analysis including 

any preprocessing in the spectral data were run using PLS-Toolbox software. PCA runs 

were made with the raw data and using different preprocessing treatments. The 

preprocessing treatments used were: auto scale, smoothing, SNV-standard normal variation, 

Mean center, auto scale + 1st derivate, auto scale + 2nd derivate, mean center + 1st derivate, 

mean center + 2nd derivative, MSC-multiplicative scattering correction. The algorithm used 

to carryout smoothing and derivatives was that ofSavitzky-Golay (every 11, 17, 21 and 31 

points). During the PCA runs it was not necessary to eliminate spectral data.  

The infrared data from clean air and air with TATP were run together in the PCA model for 

each instrument used. Figure 17 shows the Scores plots for the PCA obtained. Figure 17a 

shows the first two principal components from spectral data using the EM-27 FTIR 

spectrometer with a Globar source Figure 17b shows the first two principal component 

analyses from spectral data of TATP detection from LaserScope™ spectrometer using 
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Quantum Cascade Laser Source. The best results achieved for both PCA models (illustrated 

in Figures 17a and 17b) were using raw data.  Both results allowed classifying gas phase 

TATP explosive from clean air. In Figure 17 can be noticed that PC1 tends to relate the 

differences between the IR dataset two. 

 

Figure 16. Histogram for discrimination models of 2,4-DNT and external validation. 
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Figure 17. Score plots for the PCA, presented as (a) PC2 vs. PC1 for TATP detection from EM-27 FTIR 

spectrometer using Globar source and (b) PC2 vs. PC1 for TATP detection from LaserScope™ 

spectrometer using QCL source.  

Other hand, the loadings plot were analyzed too to support the results from PCA with the 

finality of knowing which spectral signals cause differences between the dataset. Figure 18 

shows the PC1 loading from Figure 17b, in this it can be seen than the spectral features are 

equal to infrared vibrational signal of reference TATP. Some signal recording can be 

tentatively assigned according to B. Brauer and J. Oxley as [47,48]: 891.8 cm-1 to O–C–O and 

Me–C–Me sym str, and Me–C–O asym str; 946 cm-1 to C-O str;  1197.6 cm-1 to O–C–O and 

Me–C–Me asym str, Me–C–O sym str; 1205 cm-1 to O–C–O and Me–C–Me sym str and 

finally 1234 cm-1 to C-C str, 

 

Figure 18. Figure 18.  Loading plot for PC1 from PCA for TATP detection from LaserScope™ 

spectrometer using QCL source.  

4.4. Quantum cascade laser based ir reflectance experiments 
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spectral range was 1000-1600 cm-1. PLS shown below was that best results obtained. Figure 

19 shows PLS plots of RDX deposited on TB. The best result was achieved using the spectral 

region of 1000-160 cm-1 and using mean centering as preprocessing. A total of 10 latent 

variables or factors were necessary to obtain a R2 and RMSECV equal to 0.9915 and 2.32 

g/cm2, respectively. 

 

Figure 19. PLS of RDX on travel baggage (TB) as substrate. 

Figure 20 shows PLS of PETN deposited on TB. The best resulted was achieved using the 

spectral region of 1000-1600 cm-1 and using mean centering as preprocessing treatment. A 

total of 10 latent variables or factors were necessary to obtain a R2 and RMSECV equal to 

0.9994 and 1.82 g/cm2, respectively.  

 

Figure 20. PLS of PETN on Travel Baggage as substrate.  
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5. Conclusion 

Raman and infrared vibrational techniques were used for the detection of highly energetic 

materials and chemical warfare agents simulants in different matrices such as 

pharmaceutical mix, commercials bottles and travel baggage. The analysis of the spectral 

data allows emphasizing certain results. Satisfactory results were found for the 

quantification of explosives with good values of R2cv, RMSECV. Reliable predictions 

obtained by remote sensing based on Raman spectroscopy at remote distance of 10 m 

employing 532 nm laser as excitation source. Remote Raman system using the appropriate 

chemometrics tools such as PLS, iPLS and siPLS promises to be a reliable technique for 

finding the existence of highly energetic material such as PETN deliberately hidden in 

matrices with similar chemical structures. 

Partial Least Squares (PLS) calibration models reported limits of detection very low for 

white plastic in commercial beverage bottle solutions which was the best model.  Due to the 

bottle material and commercial beverage product coloration, Malta was the worst model 

with reported limits of detection more elevated. Limits of Detection and Quantification for 

commercial bottles were compared in aqueous and mixtures.  It is observed that limits of 

Detection were significantly lower for mixtures of TEP with the commercial product.  

Integration times were the same for both aqueous and commercial beverage bottle solutions 

(each normalized with respect to bottle material, color and thickness).  Water does not 

transmit significant Raman signal, which would make limits of detection lower for aqueous 

solutions.  However, commercial beverage bottles mixtures showed lower limits of detection 

than aqueous solution since the beverage solutions inside each bottle showed significant 

Raman signal and, therefore, increasing CWAS presence in the spectra. 

PLS-DA model and discriminant analysis was done to detect TATP and 2,4-DNT traces in 

fluid air. The region of 600 to 7500 cm-1 was highly significant in the discrimination with p < 

0.00001 and 100 % discrimination for two vectors for TATP and four vectors for 2,4-DNT. 

These results show the ability of the Chemometrics methods to discriminate between vapor 

phase explosive (2,4-DNT) and air. 

Results obtained from principal component analysis to determine the presence of peroxides 

explosives such as TATP when they are in gas phase mixed with air shown be useful for 

distinction between TATP vapors and air. The principal component analysis from infrared 

spectral data used little PC for predict the variability of the spectral data, being the first two PC 

more important. PC1 loadings confirm the results from the PCA because it contained features 

from TATP spectrum. Other hand, the PLS model were shown chemometrics tool for quantify 

explosive such as RDX and PETN on substrate of the real world such as travel baggage. 

In general, vibrational spectroscopy systems designed based on this work should be useful 

for National Defense and Security applications, for screening hazardous liquids in 

government installations, seaports and in public installations to improve defense against 

terrorist attacks. 
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