124 research outputs found

    Influence of affectivity on the serial learning of CVC syllables

    Get PDF

    Automated Discovery of Flight Track Anomalies

    Get PDF
    As new technologies are developed to handle the complexities of the Next Generation Air Transportation System (NextGen), it is increasingly important to address both current and future safety concerns along with the operational, environmental, and efficiency issues within the National Airspace System (NAS). In recent years, the Federal Aviation Administrations (FAA) safety offices have been researching ways to utilize the many safety databases maintained by the FAA, such as those involving flight recorders, radar tracks, weather, and many other high- volume sensors, in order to monitor this unique and complex system. Although a number of current technologies do monitor the frequency of known safety risks in the NAS, very few methods currently exist that are capable of analyzing large data repositories with the purpose of discovering new and previously unmonitored safety risks. While monitoring the frequency of known events in the NAS enables mitigation of already identified problems, a more proactive approach of finding unidentified issues still needs to be addressed. This is especially important in the proactive identification of new, emergent safety issues that may result from the planned introduction of advanced NextGen air traffic management technologies and procedures. Development of an automated tool that continuously evaluates the NAS to discover both events exhibiting flight characteristics indicative of safety-related concerns as well as operational anomalies will heighten the awareness of such situations in the aviation community and serve to increase the overall safety of the NAS. This paper discusses the extension of previous anomaly detection work to identify operationally significant flights within the highly complex airspace encompassing the New York area of operations, focusing on the major airports of Newark International (EWR), LaGuardia International (LGA), and John F. Kennedy International (JFK). In addition, flight traffic in the vicinity of Denver International (DEN) airport/airspace is also investigated to evaluate the impact on operations due to variances in seasonal weather and airport elevation. From our previous research, subject matter experts determined that some of the identified anomalies were significant, but could not reach conclusive findings without additional supportive data. To advance this research further, causal examination using domain experts is continued along with the integration of air traffic control (ATC) voice data to shed much needed insight into resolving which flight characteristic(s) may be impacting an aircraft's unusual profile. Once a flight characteristic is identified, it could be included in a list of potential safety precursors. This paper also describes a process that has been developed and implemented to automatically identify and produce daily reports on flights of interest from the previous day

    Ultrafast excited-state dynamics and fluorescence deactivation of near-infrared fluorescent proteins engineered from bacteriophytochromes

    Get PDF
    Near-infrared fluorescent proteins, iRFPs, are recently developed genetically encoded fluorescent probes for deep-tissue in vivo imaging. Their functions depend on the corresponding fluorescence efficiencies and electronic excited state properties. Here we report the electronic excited state deactivation dynamics of the most red-shifted iRFPs: iRFP702, iRFP713 and iRFP720. Complementary measurements by ultrafast broadband fluorescence and absorption spectroscopy show that single exponential decays of the excited state with 600 similar to 700 ps dominate in all three iRFPs, while photoinduced isomerization was completely inhibited. Significant kinetic isotope effects (KIE) were observed with a factor of similar to 1.8 in D2O, and are interpreted in terms of an excited-state proton transfer (ESPT) process that deactivates the excited state in competition with fluorescence and chromophore mobility. On this basis, new approaches for rational molecular engineering may be applied to iRFPs to improve their fluorescence.Peer reviewe

    Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes : fluorescence mechanisms and excited-state dynamics

    Get PDF
    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that pi-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility.Peer reviewe

    Reaction dynamics of the chimeric channelrhodopsin C1C2

    Get PDF
    Channelrhodopsin (ChR) is a key protein of the optogenetic toolkit. C1C2, a functional chimeric protein of Chlamydomonas reinhardtii ChR1 and ChR2, is the only ChR whose crystal structure has been solved, and thus uniquely suitable for structure-based analysis. We report C1C2 photoreaction dynamics with ultrafast transient absorption and multi-pulse spectroscopy combined with target analysis and structure-based hybrid quantum mechanics/molecular mechanics calculations. Two relaxation pathways exist on the excited (S-1) state through two conical intersections Cl-1 and Cl-2, that are reached via clockwise and counter-clockwise rotations: (i) the C13=C14 isomerization path with 450 fs via Cl-1 and (ii) a relaxation path to the initial ground state with 2.0 ps and 11 ps via Cl-2, depending on the hydrogen-bonding network, hence indicating active-site structural heterogeneity. The presence of the additional conical intersection Cl-2 rationalizes the relatively low quantum yield of photoisomerization (30 +/- 3%), reported here. Furthermore, we show the photoreaction dynamics from picoseconds to seconds, characterizing the complete photocycle of C1C2

    Low-temperature and time-resolved spectroscopic characterization of the LOV2 domain of Avena sativa phototropin.

    Get PDF
    ABSTRACT The phototropins are plant blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine residue in light, oxygen or voltage (LOV) domains. The spectroscopic properties of the LOV2 domain of phototropin 1 of Avena sativa (oat) have been investigated by means of low-temperature absorption and fluorescence spectroscopy and by time-resolved fluorescence spectroscopy. The low-temperature absorption spectrum of the LOV2 domain showed a fine structure around 473 nm, indicating heterogeneity in the flavin binding pocket. The fluorescence quantum yield of the flavin cofactor increased from 0.13 to 0.41 upon cooling the sample from room temperature to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K, allowing for an accurate positioning of the flavin triplet state in the LOV2 domain at 16900 cm -1 . Fluorescence from the cryotrapped covalent adduct state was extremely weak, with a fluorescence spectrum showing a maximum at 440 nm. Time-resolved fluorescence experiments utilizing a synchroscan streak camera revealed a singlet-excited state lifetime of the LOV2 domain of 2.4 ns. FMN dissolved in aqueous solution showed a pH-dependent lifetime ranging between 2.9 ns at pH 2.0 to 4.7 ns at pH 8.0. No spectral shifting of the flavin emission was observed in the LOV2 domain nor in FMN in aqueous solution

    Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems

    Get PDF
    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment–protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy

    Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800-1000cm(-1) region

    Get PDF
    Broadband femtosecond mid-infrared pulses can be converted into the visible spectral region by chirped pulse upconversion. We report here the upconversion of pump probe transient signals in the frequency region below 1800c

    Personality predicts the vibrancy of colour imagery: The case of synaesthesia

    Get PDF
    In this study we show that personality traits predict the physical qualities of mentally generated colours, using the case of synaesthesia. Developmental grapheme-colour synaesthetes have the automatic lifelong association of colours paired to letters or digits. Although these colours are internal mental constructs, they can be measured along physical dimensions such as saturation and luminance. The personality of synaesthetes can also be quantified using self-report questionnaires relating, for example, to the five major traits of Conscientiousness, Extraversion, Agreeableness, Neuroticism, and Openness to experience. In this paper, we bring together both types of quality by examining whether the personality of individual synaesthetes predicts their synaesthetic colours. Twenty grapheme-colour synaesthetes were tested with the Big Five Inventory (BFI) personality questionnaire. Their synaesthesia was also tested in terms of consistency and average colour saturation and luminance. Two major results were found: although personality did not influence the overall robustness (i.e., consistency) of synaesthesia, it predicted the nature of synaesthetes’ colours: the trait of Openness was positively correlated with the saturation of synaesthetic colours. Our study provides evidence that personality and internal perception are intertwined, and suggests future avenues of research for investigating the associations between the two
    corecore