20 research outputs found

    Large UK retailers' initiatives to reduce consumers' emissions: a systematic assessment

    Get PDF
    In the interest of climate change mitigation, policy makers, businesses and non-governmental organisations have devised initiatives designed to reduce in-use emissions whilst, at the same time, the number of energy-consuming products in homes, and household energy consumption, is increasing. Retailers are important because they are at the interface between manufacturers of products and consumers and they supply the vast majority of consumer goods in developed countries like the UK, including energy using products. Large retailers have a consistent history of corporate responsibility reporting and have included plans and actions to influence consumer emissions within them. This paper adapts two frameworks to use them for systematically assessing large retailers’ initiatives aimed at reducing consumers’ carbon emissions. The Framework for Strategic Sustainable Development (FSSD) is adapted and used to analyse the strategic scope and coherence of these initiatives in relation to the businesses’ sustainability strategies. The ISM ‘Individual Social Material’ framework is adapted and used to analyse how consumer behaviour change mechanisms are framed by retailers. These frameworks are used to analyse eighteen initiatives designed to reduce consumer emissions from eight of the largest UK retail businesses, identified from publicly available data. The results of the eighteen initiatives analysed show that the vast majority were not well planned nor were they strategically coherent. Secondly, most of these specific initiatives relied solely on providing information to consumers and thus deployed a rather narrow range of consumer behaviour change mechanisms. The research concludes that leaders of retail businesses and policy makers could use the FSSD to ensure processes, and measurements are comprehensive and integrated, in order to increase the materiality and impact of their initiatives to reduce consumer emissions in use. Furthermore, retailers could benefit from exploring different models of behaviour change from the ISM framework in order to access a wider set of tools for transformative system change

    Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition

    Get PDF
    Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30–80 Hz gamma rhythm in which network oscillations arise through ‘stochastic synchrony’ capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs

    Direction Selectivity in a Model of the Starburst Amacrine Cell

    No full text
    The starburst amacrine cell (SBAC), found in all mammalian retinas, is thought to provide the directional inhibitory input recorded in On--Off direction-selective ganglion cells (DSGCs). While voltage recordings from the somas of SBACs have not shown robust direction selectivity (DS), the dendritic tips of these cells display direction-selective calcium signals, even when g-aminobutyric acid (GABA a,c ) channels are blocked, implying that inhibition is not necessary to generate DS. This suggested that the distinctive morphology of the SBAC could generate a DS signal at the dendritic tips, where most of its synaptic output is located. To explore this possibility, we constructed a compartmental model incorporating realistic morphological structure, passive membrane properties, and excitatory inputs. We found robust DS at the dendritic tips but not at the soma. Two-spot apparent motion and annulus radial motion produced weak DS, but thin bars produced robust DS. For these stimuli, DS was caused by the interaction of a local synaptic input signal with a temporally delayed "global" signal, that is, an excitatory postsynaptic potential (EPSP) that spread from the activated inputs into the soma and throughout the dendritic tree. In the preferred direction the signals in the dendritic tips coincided, allowing summation, whereas in the null direction the local signal preceded the global signal, preventing summation. Sine-wave grating stimuli produced the greatest amount of DS, especially at high velocities and low spatial frequencies. The sine-wave DS responses could be accounted for by a simple mathematical model, which summed phase-shifted signals from soma and dendritic tip. B

    Direction selectivity in a model of the starburst amacrine cell

    No full text

    Frontiers in Sustainable Consumption Research

    Get PDF
    While the field of sustainable consumption research is relatively young, it has already attracted scholars from all corners of the social sciences. The time has come to identify a new research agenda as trends in sustainable consumption research seem to suggest the dawning of a new phase. Not only does research need to be guided, but sustainable consumption policymaking, too, involving best practices around the application of standard and more innovative instruments. © 2016 L. A. Reisch et al

    Publisher Correction: Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    Chi3l3 induces oligodendrogenesis in an experimental model of autoimmune neuroinflammation

    Get PDF
    Chitinase 3-like-3 (Chi3l3) is expressed in microglia, but its function is not clear. Here the authors show that Chi3l3 is expressed in the subventricular zone in mouse experimental immune encephalitis, which induces oligodendrogenesis
    corecore