407 research outputs found

    Earthquake cycles and neural reverberations

    Get PDF
    Driven systems of interconnected blocks with stick-slip friction capture main features of earthquake processes. The microscopic dynamics closely resemble those of spiking nerve cells. We analyze the differences in the collective behavior and introduce a class of solvable models. We prove that the models exhibit rapid phase locking, a phenomenon of particular interest to both geophysics and neurobiology. We study the dependence upon initial conditions and system parameters, and discuss implications for earthquake modeling and neural computation

    Aktuelle Funde von "Solanum"-Arten in Sachsen-Anhalt

    Get PDF
    Der Artrang des Rotbeerigen Nachtschattens Solanum alatum MOENCH [Solanum villosum ssp. alatum (MOENCH) EDMONDS; Solanum miniatum BERNH.] und des Gelbbeerigen Nachtschattens Solanum villosum MILL. s. str. [Solanum villosum ssp. villosum; Solanum luteum MILL.] wird bis heute je nach Autor kontrovers angegeben. So vereinigen WISSKIRCHEN & HAEUPLER (1998: 480), HAWKES & EDMONDS (1972: 197-198) sowie EDMONDS & CHWEYA (1997) die beiden Sippen unter Solanum villosum und unterscheiden sie als Unterarten. ROTHMALER et al. (2005: 562) trennen beide Sippen voneinander im Artrang

    Sagittarius A* Small Satellite Mission: Capabilities and Commissioning Preview

    Get PDF
    SSCI is leading a Defense Advanced Research Projects Agency (DARPA)-funded team launching a mission in June 2021, dubbed Sagittarius A*, to demonstrate key hardware and software technologies for on-orbit autonomy, to provide a software testbed for on-orbit developmental test & autonomous mission operations, and to reduce risk for future constellation-level mission autonomy and operations. In this paper, we present the system CONOPs and capabilities, system architectures, flight and ground software development status, and initial commissioning status. The system will fly on Loft Orbital’s YAM-3 shared LEO satellite mission, and includes SSCI’s onboard autonomy software suite running on an Innoflight CFC-400 processor with onboard Automatic Target Recognition (ATR). The autonomy payload has attitude control authority over the spacecraft bus and command authority of the imaging payload, and performs fully-autonomous onboard request handling, resource & task allocation, collection execution, ATR, and detection downlinking. The system is capable of machine-to -machine tip-and-cue from offboard cueing sources via cloud-based integrations. Requests for mission data are submitted to the satellite throughout its orbit from a tactical user level via a smartphone application, and ISR data products are downlinked and displayed at the tactical level on an Android Tactical Assault Kit (ATAK) smartphone. Follow-on software updates can be sent to the autonomy suite as over-the-air updates for on-orbit testing at any time during the on-orbit life of the satellite. Communications include GlobalStar inter-satellite communications for low rate task and status monitoring, and ground station links for payload data downloads. Planned demonstrations and opportunities will be discussed

    Identification of a triplet pair intermediate in singlet exciton fission in solution.

    Get PDF
    Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley-Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]--tetracene we find rapid (<100 ps) formation of excimers and a slower (∼ 10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process.H.L.S was supported by the Winton Programme for the Physics of Sustainability and A.J.M received funding from the Engineering and Physical Sciences Research Council.This is the accepted manuscript. The final version is available at http://www.pnas.org/content/112/25/7656.abstract

    A damage model based on failure threshold weakening

    Full text link
    A variety of studies have modeled the physics of material deformation and damage as examples of generalized phase transitions, involving either critical phenomena or spinodal nucleation. Here we study a model for frictional sliding with long range interactions and recurrent damage that is parameterized by a process of damage and partial healing during sliding. We introduce a failure threshold weakening parameter into the cellular-automaton slider-block model which allows blocks to fail at a reduced failure threshold for all subsequent failures during an event. We show that a critical point is reached beyond which the probability of a system-wide event scales with this weakening parameter. We provide a mapping to the percolation transition, and show that the values of the scaling exponents approach the values for mean-field percolation (spinodal nucleation) as lattice size LL is increased for fixed RR. We also examine the effect of the weakening parameter on the frequency-magnitude scaling relationship and the ergodic behavior of the model

    Primary vs. Secondary Antibody Deficiency: Clinical Features and Infection Outcomes of Immunoglobulin Replacement

    Get PDF
    <div><p>Secondary antibody deficiency can occur as a result of haematological malignancies or certain medications, but not much is known about the clinical and immunological features of this group of patients as a whole. Here we describe a cohort of 167 patients with primary or secondary antibody deficiencies on immunoglobulin (Ig)-replacement treatment. The demographics, causes of immunodeficiency, diagnostic delay, clinical and laboratory features, and infection frequency were analysed retrospectively. Chemotherapy for B cell lymphoma and the use of Rituximab, corticosteroids or immunosuppressive medications were the most common causes of secondary antibody deficiency in this cohort. There was no difference in diagnostic delay or bronchiectasis between primary and secondary antibody deficiency patients, and both groups experienced disorders associated with immune dysregulation. Secondary antibody deficiency patients had similar baseline levels of serum IgG, but higher IgM and IgA, and a higher frequency of switched memory B cells than primary antibody deficiency patients. Serious and non-serious infections before and after Ig-replacement were also compared in both groups. Although secondary antibody deficiency patients had more serious infections before initiation of Ig-replacement, treatment resulted in a significant reduction of serious and non-serious infections in both primary and secondary antibody deficiency patients. Patients with secondary antibody deficiency experience similar delays in diagnosis as primary antibody deficiency patients and can also benefit from immunoglobulin-replacement treatment.</p></div

    A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton

    Get PDF
    Wiskott-Aldrich syndrome (WAS) is associated with mutations in the WAS protein (WASp), which plays a critical role in the initiation of T cell receptor–driven (TCR-driven) actin polymerization. The clinical phenotype of WAS includes susceptibility to infection, allergy, autoimmunity, and malignancy and overlaps with the symptoms of dedicator of cytokinesis 8 (DOCK8) deficiency, suggesting that the 2 syndromes share common pathogenic mechanisms. Here, we demonstrated that the WASp-interacting protein (WIP) bridges DOCK8 to WASp and actin in T cells. We determined that the guanine nucleotide exchange factor activity of DOCK8 is essential for the integrity of the subcortical actin cytoskeleton as well as for TCR-driven WASp activation, F-actin assembly, immune synapse formation, actin foci formation, mechanotransduction, T cell transendothelial migration, and homing to lymph nodes, all of which also depend on WASp. These results indicate that DOCK8 and WASp are in the same signaling pathway that links TCRs to the actin cytoskeleton in TCR-driven actin assembly. Further, they provide an explanation for similarities in the clinical phenotypes of WAS and DOCK8 deficiency.United States. Public Health Service (RO1AI114588)United States. Public Health Service (K08AI114968
    • …
    corecore