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Singlet exciton fission is the spin-conserving transformation of
one spin-singlet exciton into two spin-triplet excitons. This exciton
multiplication mechanism offers an attractive route to solar cells
that circumvent the single-junction Shockley-Queisser limit. Most
theoretical descriptions of singlet fission invoke an intermediate
state of a pair of spin-triplet excitons coupled into an overall spin-
singlet configuration, but such a state has never been optically
observed. In solution, we show that the dynamics of fission are
diffusion limited and enable the isolation of an intermediate
species. In concentrated solutions of bis(triisopropylsilyethylnyl
(TIPS))-tetracene we find rapid (<100 ps) formation of excimers and
a slower (∼ 10 ns) break-up of the excimer to two triplet exciton-
bearing free molecules. These excimers are spectroscopically dis-
tinct from singlet and triplet excitons, yet possess both singlet
and triplet characteristics, enabling identification as a triplet-pair
state. We find that this triplet-pair state is significantly stabilised
relative to free triplet excitons, and that it plays a critical role in
the efficient endothermic singlet fission process.
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Introduction
The fission of photogenerated spin-singlet excitons into pairs of
spin-triplet excitons is an effective way to generate triplet excitons
in organic materials [1][2]. Because the triplets produced are
coupled into an overall singlet state, spin is conserved and triplet
formation can proceed on sub-100 fs timescales [1][3][4][5] with
yields of up to 200% [1][6][7]. Current interest in singlet fission
is driven by its potential to improve the efficiency of solar cells
by circumventing the Shockley-Queisser limit for single-junction
devices [8][9][10]. Incorporating a singlet-fission material within
a low-band-gap solar cell, it should be possible to capture the
energy normally lost to thermalisation following the absorption
of high-energy photons [11][12]. An external quantum efficiency
of 129% [13] and an internal quantum efficiency of >180%
[14] have been reported using pentacene as the singlet fission
material and fullerene (C60) as electron acceptor. In spite of such
significant advances, many questions remain about the underlying
mechanism of triplet formation, such as the role of intermediate
electronic states and the ability of systems to undergo endother-
mic fission.

The basis of most kinetic descriptions of singlet fission is
the triplet-pair state 1(TT), which is entangled into an overall
singlet and is an essential intermediate for the formation of
two free triplet excitons [1][15]. Whether this intermediate state
is present only transiently, as expected in exothermic systems
such as pentacene, or whether it can be sufficiently long-lived to
also play a central role in the fission process in slower systems
is unclear. Transient absorption measurements of the canonical
systems pentacene and tetracene in the solid state allow clear
identification of only the singlet and triplet states [3][6][16][17]
meaning the character of any intermediate has not been observed
directly. Other factors affect fission in the solid state that can
complicate analysis, such as exciton diffusion, delocalisation of
excitations and the heterogeneity of materials.

Singlet fission in solution offers an alternative approach to in-
vestigate the intermolecular interactions that mediate fission. The
conformational freedom of molecules and diffusional timescales
enable a new approach to investigating fission in systems where
the essential photophysics, such as the progression of excited
states and relative zero-point energies, are not expected to dif-
fer largely from the solid state. Some of the authors have re-
cently demonstrated that quantitative singlet exciton fission can
be achieved in TIPS-pentacene when a molecule with a singlet
exciton collides with a molecule in its ground state through dif-
fusion, with triplet yields reaching 200% at high concentrations
[18]. Whilst the triplet yields are comparable to the solid state,
fission proceeds orders of magnitude more slowly in solution,
offering a clearer picture of the evolution of the states involved.
These results pointed to excimer formation as the driving force
enabling singlet fission, but this state was too short-lived for a
clear identification.

To resolve the role of such intermediates in solution-based
singlet fission, we draw on the well-established study of pentacene
and tetracene in the solid state. Whereas singlet fission in pen-
tacene is exothermic by ∼100 meV [1], in tetracene it is found to
be endothermic by ∼180 meV [1][19][20][21]. Accordingly, triplet
formation is significantly faster in pentacene films (∼80 fs)[5]
than in tetracene (∼90 ps) [22], though curiously in the latter ma-
terial the process remains highly efficient and fully independent
of temperature [22][23]. In this study, we study solutions of TIPS-
tetracene, a tetracene derivative also capable of singlet fission
[24]. Analogous to tetracene films, we determine that TIPS-

Significance

We use transient spectroscopy to investigate the mechanism
of singlet exciton fission, a quantum mechanical phenomenon
in some organic molecules in which a spin-singlet excited state
can split into two spin-triplet states. This process may be
harnessed to boost solar cell efficiencies, but the underlying
mechanism remains poorly understood. Central to most mod-
els is a triplet-pair state, consisting of two triplets entangled
into an overall spin-singlet configuration, but it has never
before been optically detected. In a solution-based system, we
detect a state with simultaneous singlet- and triplet-exciton
character which dissociates to form triplet excitons in 120%
yield. We consider that this intermediate constitutes a triplet-
pair state, and its observation allows important insight into
the nature of triplet exciton coupling.
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Fig. 1. The absorption and emission spectra of TIPS-tetracene show excimer
formation in concentrated solutions. (a) The excited state energy diagram
and chemical structure of TIPS-tetracene. The triplet energy was obtained
from the phosphorescence observed in a film of dilute TIPS-tetracene and
polystyrene (inset Figure 1b). (b) UV-Vis absorption (light grey) of 0.3 mg/ml
TIPS-tetracene in CHCl3. UV-Vis spectra were recorded for solutions from
0.03-300 mg/ml and no change was observed in the absorption peak positions
(Fig. S3). The normalized steady-state photoluminescence spectra of 300
mg/ml (dark green) and 3 mg/ml (dark grey) show that excimeric emission,
centered at 1.75 eV, in the concentrated solution is absent in the dilute solu-
tion. The phosphorescence observed in a film in the inset [36]. Interference
at 1.2 eV, from the excitation source, has been removed for clarity. (c) The
normalized time-resolved photoluminescence decay of the dilute solution
at the `excitonic' (2.13 eV) region and the `excitonic' and `excimer' (1.77
eV) regions for the concentrated solution. In the dilute case (grey) the time
constant of the excitonic decay is 11.6 ns and this is shortened to 140 ps in 300
mg/ml, shown in the inset. The <600 ps decay at 2.13 eV was measured using
PL up-conversion with a time resolution of 200 fs. The excimeric emission of
300 mg/ml decays with two time constants; < 300 ps and 8.7 ns.

tetracene is also an endothermic singlet fission system, however
here the combination of the energetics, dynamics in solution and
sharply resolved spectral features allow the intermediate state to
be isolated.

The absorption and emission energies in solutions of TIPS-
tetracene gives a singlet exciton energy of 2.3 eV (Figure 1).
No phosphorescence could be detected in solution, but in films
of dilute TIPS-tetracene in a polystyrene matrix we detect weak
phosphorescence centred at∼1.25 eV at room temperature (inset
Figure 1b). This is consistent with what has been measured for
tetracene (1.35 eV), using the same method [36]. The endother-
micity of fission in TIPS-tetracene is thus on the order of 100-300
meV, comparable to that observed in tetracene films, and films of
TIPS-tetracene at room temperature display a similarly slow (10’s
of ps) rate of fission as tetracene with no distinct intermediate
species (SI Appendix, Figure S5).

In solution however, using transient absorption and time-
resolved photoluminescence spectroscopy, we directly monitor
the conversion of photogenerated singlet excitons into an excimer
in <100 ps. The excimer subsequently dissociates into free triplets
over 10s of nanoseconds, with a final triplet yield of 120%. We
observe that the excimer carries absorption signatures of both a
singlet- and triplet-character state as soon as it is formed. The
rapid formation of this intermediate with spin-triplet absorption
signature and emissive singlet character indicates that it is a
bound state of two spin-triplet excitons. We consider that one
triplet is localised on each molecule and that they are coupled
into an overall spin-zero state, such that these results constitute a

Fig. 2. The time-resolved photoluminescence of the concentrated sample
indicates the singlet and excimer states are close in energy (a) The time
and spectrally resolved photoluminescence of 300 mg/ml TIPS-tetracene
measured with an intensified CCD camera. (b) Timeslices at three time points
in measurement (a): At 0.5 ns we observe strong singlet emission. At 10 ns
and 25 ns this has decayed to show weak excimeric and singlet emission. (c),
The normalized kinetics of the excimeric and singlet decay. The kinetics are
normalized at 6 ns, by which time the photogenerated singlet population has
fully decayed and only trace singlet emission is detected. The decay of the
excimeric emission and trace singlet emission are well matched, indicating
they are populated by the same excited state species, as shown schematically
in the inset. (d) Schematic showing the relationship of the singlet and excimer
states. Solid arrows represent absorption of light and population transfer
between the two states whilst dashed lines indicate weak radiative decay.

direct optical observation of a 1(TT) state. In this solution system,
the non-endothermic formation of this stabilised, multi-exciton
excimer intermediate reduces radiative decay from the singlet and
enables thermal dissociation into two free triplet excitons, with an
overall energy higher than that that of the original singlet exciton,
in high yield.

Results and Discussion
Formation of Excimers

In Figure 1b we present the absorption spectrum of TIPS-
tetracene in 0.3 mg/ml solution and the normalized steady-state
photoluminescence spectra of both 3 mg/ml (‘dilute’) and 300
mg/ml (‘concentrated’) solutions in chloroform. We measured
the UV-Vis absorption of solutions over several orders of mag-
nitude in concentration and whilst the highest optical densities
caused saturation of the detector, we observed no change in
the absorption edge, lineshape or any other signs of ground-
state aggregation (SI Appendix, Fig. S3). In an additional mea-
surement, we used diffusion-ordered nuclear magnetic spec-
troscopy (DOSY) to determine the diffusion constant of the
TIPS-tetracene molecules in the same solutions. Though the
highest concentrations result in a clear increase in viscosity, this
effect is of comparable magnitude for the CHCl3 molecules and
TIPS-tetracene (SI Appendix, Fig. S1). These measurements
provide strong evidence that over the entire concentration range
the solutions contain only free, unaggregated TIPS-tetracene
molecules in the ground state. In this situation, TIPS-tetracene
follows the same molecular motion picture established for the
solution-mediated fission in TIPS-pentacene [18]. We note, how-
ever, that the principal new finding in the present paper (of the
formation of a triplet pair intermediate state, discussed below)
obtains also in the presence of some molecular pre-organization.
The concentration-dependent photoluminescence spectra reveal
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Fig. 3. Transient absorption spectra of dilute and concentrated solutions
show excimer and triplet species in the concentrated solution. (a) Transient
absorption spectra of 3 mg/ml TIPS-tetracene recorded at pump-probe time
delays of 1 ps - 3 μs. The positive feature at 2.17 eV is assigned to stimulated
emission of singlet excitons and decays with the same time constant as the
negative photo induced absorption feature centered at 1.9 eV (Fig. S15). (b)
Transient absorption spectra of 300 mg/ml TIPS-tetracene recorded over a
similar pump-probe delay range (1 ps- 3 μs). In this measurement we observe
the quenching of the initial species (blue trace) to form an intermediate by
400 ps (red trace), which decays to form triplet excitons. The triplet exciton
absorption spectrum was confirmed from a separate sensitization experi-
ment (Fig. S18). All spectra have been normalised for fluence between the
NIR and visible regions. Time-slices from the ns measurement are normalised
to show the triplet features.

excimer character in the excited state: we observe a broad, low-
energy emissive band at high concentrations, similar to the ex-
cimer identified in TIPS-pentacene solutions.

Time-resolved photoluminescence decay of the dilute and
concentrated solutions is shown in Figure 1c. In the dilute regime,
the decay of the photoluminescence is mono-exponential across
the emissive bandwidth and has a time constant of 11.6 ns. The
emission at the 0-1 emissive peak in the concentrated solution is
also mono-exponential, but is heavily quenched to 140 ps (inset
Figure 1c). In accordance with this quenching, the photolumi-
nescence quantum yield drops from 75% in the dilute solution
to 2% in the concentrated. The singlet is not quenched into a
completely dark state, but forms a new weakly emissive species
with a featureless, red- shifted emission spectrum. Seen only in
concentrated solutions, this species decays with a lifetime of 8.7
ns and is assigned to an excimer. From these photoluminescence
results of the concentrated solution we can confirm the presence
of two distinct emissive species that possess significantly different
radiative lifetimes.

To gain a better understanding of the long-time decay ki-
netics, we recorded the time- and spectrally-resolved photolumi-
nescence of the concentrated solution with an intensified CCD

Fig. 4. The evolution of three spectral species in concentrated solution,
identified by the genetic algorithm. (a) The normalized excited state pop-
ulation from the genetic algorithm in concentrated TIPS-tetracene solution
from 100 fs (the peak of the instrument response) to 3 μs after excitation,
obtained from transient absorption measurements. The decay and rise of the
singlet (blue), excimer (red) populations and the rise of the triplet (black)
were obtained from sub-picosecond transient absorption, while the decay
of the excimer and the decay of the triplet population were measured with
nanosecond transient absorption. A guide to the eye is fitted to the triplet
kinetic to show the dynamics with more clarity. (b) The corresponding singlet
(blue) and excimer (red) kinetics for a range of concentrations (100-300
mg/ml). (c) Spectra of the singlet (top), excimer (middle) and triplet (bottom)
obtained from genetic algorithm analysis, alongside raw TA spectra (grey)
from independent reference measurements (dilute solution and sensitiza-
tion).

camera (Figure 2a and 2b). In this more sensitive measurement
we detect a weak long-lived component to the singlet emission
decay with the same time constant as the excimeric emission (8.7
ns, Figure 2c). This observation indicates that the singlet can
be re-populated by a state that is close in energy and that also
gives rise to weak excimeric emission, as depicted in Figure 2d.
These decay kinetics also enable us to determine the photolu-
minescence quantum yield of the individual components. Using
spectral deconvolution methods (described below and in the SI
Appendix) we can separate the PL into contributions from the
prompt singlet, excimer and delayed singlet species. The delayed
singlet corresponds to singlet emission after 6 ns, when we observe
the onset of delayed emission kinetics (Figure 2c). Integration of
the PL associated with each component gives us their contribution
to the PLQE of the solution. The photogenerated singlet emission
exhibits a yield of 1.3%, while the re-formed singlet and excimer
emission have efficiencies of 0.3% and 0.4%, respectively. Given
the low likelihood of a singlet exciton to emit before forming
an excimer, we determine that 98% of the re-formed singlets
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Fig. 5. The transient absorption spectra reveal the shift in absorption peak
energies between the excimer intermediate and free triplet excitons. (a)
The normalized excimer and triplet absorption spectra with the common
absorption bands highlighted.

return to the excimer manifold, meaning singlet re-formation and
emission are both minor decay pathways from the excimer state.
The most important insight we take from this measurement is that
the singlet and excimer states are close in energy.

Diffusional singlet exciton fission
Because the bulk of the excitations generated do not emit

from either the singlet or emissive excimer states, we turn to
transient absorption spectroscopy to track the evolution of these
states. This pump-probe technique is widely used to study the
photophysics of organic materials and is well suited to studies
of singlet fission due to its ability to provide detailed signatures
of emissive and ‘dark’ excited state species. In brief, transient
absorption measures the time evolution of the absorption of a
material following photoexcitation. A ‘pump’ pulse excites the
sample, and a broad-band ‘probe’ pulse then arrives at a series
of time delays. The transmission of the probe is measured with
and without the pump, and this differential signal is normalised
by the total transmission (△T/T). The result is a 2D matrix of
transmission intensity as a function of time and probe energy,
in which the absorption of photoexcited states is negative and
photoemission stimulated by the probe is positive.

Figure 3a shows the transient absorption spectra of dilute
TIPS-tetracene in chloroform, recorded over a pump-probe
range of 1 ps to 3 μs. The positive feature above 2.1 eV matches
the position of the 0-1 photoluminescence peak and is therefore
assigned to stimulated emission from singlet excitons. The spec-
trum in the probe range below 2.1 eV reflects the singlet excited
state absorption. All features in this system decay uniformly with
a time constant of 11 ns, in good agreement with the mono-
exponential photoluminescence decay discussed above for the
same solution. No other excited state signatures are present
within the resolution of the experiment. Taking into account
the triplet absorption cross section and the noise level of the
measurement, we set an upper limit of 6% as the yield of triplet
excitons through intersystem crossing in this solution. We there-
fore conclude that in the dilute regime only singlet excitons are
present.

We observe similar signatures immediately following pho-
toexcitation of the concentrated solution (Figure 3b). The stim-
ulated emission above 2.1 eV and shape of the photoinduced
absorption band in the first 300 ps (blue lines) indicate that the
initial photoexcited species is the same at both concentrations.
The subsequent spectral evolution shows pronounced differ-
ences, however, as the initial singlet features evolve over several
hundred picoseconds to form a new absorption profile (solid red
trace) that was not observed in the dilute solution. This absorp-
tion profile displays a broad absorption feature in the visible
probe region and sharper peaks in the near-IR. We attribute this
intermediate transient absorption signal to the excimer formed
from singlet excitons. It decays on the same timescale as the ex-
cimeric emission and is only present in concentrated solution. We
observe that an increase in viscosity by the addition of polystyrene
slows the formation of this species, indicating that it is formed via
diffusional collisions (SI Appendix, Fig. S11 and S16). Analysis of
the time constant of excimer formation and concentration reveals
that the process follows second order reaction kinetics (Figure 4b
and SI Appendix, Fig S11).

The excimer spectrum decays over nanoseconds to yield a
third, sharply peaked absorption profile (Figure 3b, black trace).
This final spectral signature has a 1.2 μs lifetime and is assigned
to triplet excitons, which we confirmed using a separate triplet
sensitisation experiment. Briefly, in a degassed solution of N-
methylfulleropyrrolidine and TIPS-tetracene we selectively excite
the fullerene, which rapidly undergoes intersystem crossing to
generate a large population of triplets. These are transferred to
TIPS-tetracene through diffusional collisions (see SI Appendix,
Figure S18-21), resulting in a long-lived signature that closely
matches the features observed under direct excitation (Fig 4c,
bottom)[26][27]. The remarkably sharp triplet absorption fea-
tures we observe for the triplet exciton have been observed in
a small set of other systems [18][28], where the rigidity of the
molecule gives narrow absorption bandwidths, and are a distinct
advantage of solution studies of acenes compared to the solid
state. In this case, the sharp features allow us to distinguish
the absorption signatures of the three species, and in particular
track the evolution of the excimer to the triplet excitons. The
sensitisation measurement also enabled a determination of the
triplet absorption cross section of 5400 Lmol-1cm-3 at 1.63 eV,
based on the degree of quenching of the triplet excitons on the
sensitizer by TIPS-tetracene [27]. This value was used to obtain
a triplet exciton yield of 120% ± 20% of the singlet exciton
concentration. It is not surprising that the triplet exciton yield in
this system is lower than in TIPS-pentacene solutions, considering
the unfavourable energetics of singlet fission in TIPS-tetracene.
This distinction notwithstanding, the high yield and observed
concentration dependence of triplet exciton formation, analo-
gous to TIPS-pentacene [18], confirm that the triplet excitons are
produced in this system via diffusional singlet exciton fission.

Isolation of a Triplet-Character Intermediate
Following the identification of three separate species in con-

centrated TIPS-tetracene solution, we determine the time evo-
lution of each using singular value decomposition and a spectral
deconvolution code [29]. This code, based on a genetic algorithm,
generates spectra that best reproduce the original transient ab-
sorption data while satisfying physical constraints such as spec-
tral shape and population dynamics. The normalised population
kinetics of singlet excitons, excimer and triplet excitons in the 300
mg/ml solution are presented in Figure 4(a). The singlet exciton
population is shown from 100 fs, the peak of the instrument re-
sponse, and decays with a 70 ps lifetime, in reasonable agreement
with the fast PL decay observed with PL up-conversion (inset Fig.
1c). We observe excimer formation concomitant with the decay
of the singlet exciton spectral features. The excimer population
then decays with a time constant of 7.9 ns, consistent with the pho-
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toluminescence lifetime of 8.7 ns. The triplet exciton population
rises with a 5 ns time constant and reaches a maximum between
10-50 ns. Considering the short singlet lifetime and the extended
lifetime of the excimer, we propose that triplet excitons arise
directly from the excimer decay. We thus find that the excimer
is in fact an intermediate in the endothermic formation of free
triplet excitons. Interestingly, when we run the same analysis on
the measurements of a TIPS-tetracene film at room temperature,
we observe no distinct intermediate state: triplets appear to form
directly from the initial state.

In addition to the evolution of the species over time, the
distinct spectra of the singlet, excimer and triplet species were
extracted in each spectral region. We are able to achieve such
effective spectral and temporal resolution of these states due
to the combination of diffusion-limited dynamics, the narrow
absorption bands of triplet excitons in solution and the endother-
micity of free triplet formation. As shown in Figure 4(c), the
extracted spectra for the singlet and triplet excitons closely match
reference measurements. The remaining spectrum, which can not
be formed as a linear combination of the other two, is that of the
excimer intermediate and reveals crucial information about the
nature of that state.

We observe five sharp absorption features in the triplet exci-
ton spectrum across the visible and NIR spectral regions (Figure
3). The same absorption bands are present in the excimer spec-
trum and appear from 80 ps, when the process is still diffusion
limited. These absorption bands of the excimer are sharp at low
energies (1.28 and 1.46 eV) and appear on top of an underlying
excited state absorption from 1.6- 2.2 eV. Notably, we observe
that the triplet-like absorption bands of the excimer are shifted
and broadened in energy from those of free triplet excitons by
5-10 meV for each band (Figure 5). The five absorption bands
simultaneously red-shift over the 1-5 ns timescale as the excimer
population is replaced by free triplet excitons. The presence of
triplet exciton absorption bands in the excimer indicates that it
develops triplet character upon its formation, on a timescale too
fast to be explained by intersystem crossing, which is clearly inef-
ficient in the dilute solution. We propose that the shift observed
in the triplet-pair state absorption reflects the subtle difference in
the excited state manifolds of this state and free triplet excitons
on isolated molecules.

­­ ­­
This result reveals a state that is electronically similar, yet not

identical, to free triplet excitons that can be formed in < 100 ps
from singlet excitons. This state and retains enough singlet char-
acter to re-form singlet excitons and itself luminesce. These ob-
servations - dual singlet-triplet character, showing the absorption
of free molecular triplets at the same time as broader singlet-like
bands - allow identification as a bound triplet-pair state 1(TT). We
consider that the formation of this state already constitutes the
critical step of singlet exciton fission, though it is the subsequent
dissociation into free triplet excitons that determines the final
triplet yield. The subtle electronic structural differences that we
uncover between the triplet-pair intermediate and free triplet
excitons could give insight into the nature of triplet-pair states.
In particular, the nature of coupling between two triplet excitons
which appears to give a substantial stabilization, as we explain
below, remains to be well understood.

Endothermic Singlet Fission via a Triplet-Pair State
From these results we can put together the energetic picture

of singlet fission in this endothermic system. It follows from the
photoluminescence results above that the energy of the triplet-
pair excimer state is equal to or slightly below that of the singlet
exciton (2.3 eV). From analysis of the radiative and non-radiative
decay rates for the singlet and excimer, and the concentration
dependence, we determine that excimers are formed upon the
collision of singlet excitons. In addition, the equilibrium between

the singlet and exicmer manifolds strongly favours excimer for-
mation, while loss via singlet emission represents a minor decay
pathway for the excimer.

Our estimate of the endothermic barrier in this system is
based on a triplet energy of 1.25 eV, the middle of the broad
phosphorescence peak observed in thin films. We consider that
an energy barrier of about 200 meV is consistent with activation
over a thermal barrier. If we consider a Boltzmann distribution
and the 5 ns time constant for free triplet formation, this system
would require an attempt frequency on the order of 1011-1013 Hz
to overcome this energy barrier into independent triplet excitons.
We conjecture that the reason such a slow thermal dissociation
of the stabilised excimer intermediate into free triplets is able
to proceed with such high efficiency is because competing decay
channels are slower. Radiative decay via the singlet is substan-
tially reduced in the concentrated solution as a result of forming
excimers. The intrinsic radiative lifetime of 2 μs for the excimer is
consistent with the microsecond radiative lifetimes reported for
excimers of pyrene and anthracene [30][31], and gives sufficient
time for competing non-radiative processes such as thermally
activated triplet formation. These non-radiative decay processes
shorten the excited state lifetime of the excimer to give the fluo-
rescence lifetime of 8 ns that we measure in transient absorption
and PL.

From the data available, it is difficult to ascertain the degree
to which the two-step mechanism of fission in solution relates
to the solid state. Although we observe no distinct intermediate
in films of TIPS-tetracene, it is possible, for instance, that the
conformational constraints of the film prevent any significant
stabilization of the intermediate state that would measurably
distort its absorption spectrum relative to free triplets. Without
a clear identification of such effects, though, the mechanism of
this endothermic singlet fission will remain in question. We note,
however, that it would be surprising for the same material to be
capable of singlet fission via two completely distinct mechanisms
and propose that a strongly stabilized TT intermediate still plays
an important role.

We can compare the results here with studies from films of
tetracene, where the first step of highly efficient endothermic
singlet fission is temperature independent [22][23] and has been
proposed to involve barrier-free formation of an intermediate
state [32][33] or tunnelling into a bound triplet pair [4]. We
find that our model is in qualitative agreement with these other
studies; our endothermic system reveals rapid formation of a
bound intermediate with triplet character that goes on to produce
two free triplet excitons over a longer timescale. We speculate that
the stabilization we observe in the triplet-pair excimer, relative to
free triplet excitons, may occur to a lesser degree in the solid state
as well and enable the fast formation of bound triplets.

These results provide an important and surprising insight into
the nature of the triplet-pair state, which has long played a central
role in theories of singlet fission but never been directly observed.
The bound state can be significantly stabilized relative to two free
triplet excitons, here by 100-300 meV, indicating a substantial
interaction between the triplets. A similar effect is observed
in some polyene-type systems, in which the doubly-excited 2Ag
state can be identified as a bound triplet pair [34]. In poly(3-
dodecylthienylenevinylene), for instance, the 2Ag state is substan-
tially lower in energy than the threshold for singlet exciton fission,
and indeed offers a rapid decay channel for triplet pairs [25].
Multi-exciton states with Ag symmetry have also been invoked
to explain fission in calculations of crystalline pentacene, though
in that system there is no evidence of any significant energetic
stabilization in this state [35]. It is possible that stabilized triplet-
pair states akin to the one presented here play an important role
in fission across different molecular systems, especially nominally
endothermic materials such as tetracene, but more exploration of

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

Footline Author PNAS Issue Date Volume Issue Number 5

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680



Submission PDF

this phenomonenon is needed. In this TIPS-tetracene system, the
stabilization we observe and the accompanying effects of this cou-
pling on the transient absorption spectra, should provide fertile
ground for advanced theoretical investigations of the interactions
between adjacent triplet excitons. Explorations of the nature and
electronic structure of this triplet-pair intermediate via multi-
pulse techniques will enable a more complete understanding of
the mechanism of singlet fission and may establish the impor-
tance of such stabilized states for mediating triplet formation in
endothermic systems.

Materials and Methods
TIPS-tetracene was synthesised according to the procedure in reference [37].

For most of the photophysical characterisation (see SI appendix for
details) TIPS-tetracene was measured in solutions of chloroform (3-300
mg/ml) in sealed 1 mm pathlength cuvettes. Steady state UV-Vis absorption

spectra were taken at RT using a Cary 400 UV-Visible Spectrometer. For
these meaurements 200 μm and 5 μm pathlength cells were used. Steady
state and time-resolved fluorescence spectra were acquired with a PicoQuant
LDH400 pulsed laser and SpectroPro2500i spectrograph. Photoluminescence
up-conversion was measured using a Jobin Yvon:Triax90 spectrometer and
Jobin Yvon:Symphony CCD.

Femtosecond and nanosecond transient absorption measurements were
carried out with an amplified Ti:Sapphire (Spectra Physics Solstice) laser
system and imaged using an Andor Shamrock SR 303i spectrometer. See
SI Appendix for more details regarding the TA set-up and data analysis
techniques.
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