6,124 research outputs found

    Improving supplementary feeding in species conservation

    Get PDF
    Supplementary feeding is often a knee-jerk reaction to population declines, and its application is not critically evaluated, leading to polarized views among managers on its usefulness. Here, we advocate a more strategic approach to supplementary feeding so that the choice to use it is clearly justified over, or in combination with, other management actions and the predicted consequences are then critically assessed following implementation. We propose combining methods from a set of specialist disciplines that will allow critical evaluation of the need, benefit, and risks of food supplementation. Through the use of nutritional ecology, population ecology, and structured decision making, conservation managers can make better choices about what and how to feed by estimating consequences on population recovery across a range of possible actions. This structured approach also informs targeted monitoring and more clearly allows supplementary feeding to be integrated in recovery plans and reduces the risk of inefficient decisions. In New Zealand, managers of the endangered Hihi (Notiomystis cincta) often rely on supplementary feeding to support reintroduced populations. On Kapiti island the reintroduced Hihi population has responded well to food supplementation, but the logistics of providing an increasing demand recently outstretched management capacity. To decide whether and how the feeding regime should be revised, managers used a structured decision making approach informed by population responses to alternative feeding regimes. The decision was made to reduce the spatial distribution of feeders and invest saved time in increasing volume of food delivered into a smaller core area. The approach used allowed a transparent and defendable management decision in regard to supplementary feeding, reflecting the multiple objectives of managers and their priorities

    Solutions to the tethered galaxy problem in an expanding universe and the observation of receding blueshifted objects

    Get PDF
    We use the dynamics of a galaxy, set up initially at a constant proper distance from an observer, to derive and illustrate two counter-intuitive general relativistic results. Although the galaxy does gradually join the expansion of the universe (Hubble flow), it does not necessarily recede from us. In particular, in the currently favored cosmological model, which includes a cosmological constant, the galaxy recedes from the observer as it joins the Hubble flow, but in the previously favored cold dark matter model, the galaxy approaches, passes through the observer, and joins the Hubble flow on the opposite side of the sky. We show that this behavior is consistent with the general relativistic idea that space is expanding and is determined by the acceleration of the expansion of the universe -- not a force or drag associated with the expansion itself. We also show that objects at a constant proper distance will have a nonzero redshift; receding galaxies can be blueshifted and approaching galaxies can be redshifted.Comment: 8 pages including 6 figures, to appear in Am. J. Phys., 2003. Reference added in postscrip

    Limb-darkening functions as derived from along-track operation of the ERBE scanning radiometer for January 1985

    Get PDF
    During January 1985, the scanning radiometer aboard the Earth Radiation Budget Satellite was operated to scan along-track. These data have been analyzed to produce limb-darkening functions for Earth emitted radiation, which relate the radiance in any given direction to the radiant exitance. Limb-darkening functions are presented in tabular form and shown as figures for 10 day cases and 12 night cases, corresponding to various scene types and latitude zones. The scene types were computed using measurements within 10 deg of zenith. The limb-darkening functions have values of 1.03 to 1.09 at zenith, with 1.06 being typical. It is found that latitude causes a variation on the order of 1 percent, except for zenith angles greater than 70 deg. These limb-darkening models are about 2 percent higher at zenith than the models derived from Nimbus 7 data

    Self-assembly of ATP synthase subunit c rings

    Get PDF
    AbstractSubunit c of the H+ transporting ATP synthase is an essential part of its membrane domain that participates in transmembrane proton conduction. The annular architecture of the subunit c from different species has been previously reported. However, little is known about the type of interactions that affect the formation of c-rings in the ATPase complex. Here we report that subunit c over-expressed in Escherichia coli and purified in non-ionic detergent solutions self-assembles into annular structures in the absence of other subunits of the complex. The results suggest that the ability of subunit c to form rings is determined by its primary structure

    APPLICATIONS OF WEPS AND SWEEP TO NON-AGRICULTURAL LANDS

    Get PDF
    Soil erosion by wind is a serious problem throughout the United States and the world. Dust from wind erosion obscures visibility and pollutes the air. It fills road ditches where it impacts water quality, causes automobile accidents, fouls machinery, and imperils animal and human health. Dust and specifically particulate matter less than 10 microns (PM10), is regulated by the US-EPA National Ambient Air Quality Standards. The Wind Erosion Prediction System (WEPS) model was developed by the USDA Agricultural Research Service, primarily for the USDA Natural Resources Conservation Service to simulate wind erosion and develop conservation plans on cultivated agricultural lands. WEPS is a process based, daily-time step model that simulates hydrology, plant growth and decomposition, land management, and soil surface erodibility to simulate soil wind erosion loss (total, saltation/creep, suspension, and PM10 sizes) as affected by stochastically simulated local weather. The WEPS erosion sub-model has been developed into a stand-alone companion product that is known as the Single-event Wind Erosion Evaluation Program (SWEEP). SWEEP consists of the stand-alone WEPS Erosion sub-model combined with a user-friendly graphical interface and simulates soil loss and dust emissions from single wind storm events (i.e., one day). In addition to cultivated agricultural lands, wind erosion results in sediment and dust emissions from construction sites, mined and reclaimed land, landfills, and other disturbed lands. Such disturbed lands are often regulated by government agencies. The US-EPA sets limits on pollution levels and establishes permits for pollution release. In addition, state agencies develop State Implementation Plans (SIP’s) and operate permit programs for release of fugitive dust. Although developed for agricultural situations, WEPS and SWEEP are useful tools for simulating erosion by wind for such lands where typical agricultural practices and control methods are not utilized. WEPS is suitable for simulating long term (multiple years) control strategies such as mulching, re-vegetation, and large roughness elements such as burms. SWEEP on the other hand can simulate the potential soil loss for site specific planned surface conditions and control practices for a given date. SWEEP also provides probabilities of dust events given the defined surface conditions for the specified location and date. This paper explores the use of WEPS and SWEEP for developing control strategies for fugitive dust on construction sites and other non-agricultural disturbed lands. Case studies and comparative scenarios with examples of modifying WEPS and SWEEP inputs and management files to simulate common erosion control strategies are presented. Control strategies discussed include the simulation of water and other dust suppressants, wind barriers such as silt and snow fencing and hay bales, anchored and crimped straw mulch, vertical mulches, erosion blankets, re-vegetation, gougers, basin blades, berms, and other roughening practices. For example, dust suppressants are simulated by creating a crusted soil with low loose erodible material on the surface. Example simulations will be demonstrated. The paper describes tools needed to design erosion control plans that are not only cost-effective but also demonstrate regulatory compliance by using a science-based approach to risk assessment

    Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569

    Get PDF
    Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster's detailed chemical composition. Therefore, we have used high-resolution spectra from the Magellan-M2FS and VLT-FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of -48.8 km/s (sigma = 5.3 km/s; 148 stars) and a mean [Fe/H] =-0.87 dex (19 stars), but the cluster's 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster's low mean [La/Eu] = -0.11 dex indicates significant pollution with r-process material. We confirm that both HBs contain cluster members, but metallicity and light-element variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as delta Y ~ 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.Comment: 72 pages, 14 figures, 8 tables; published in The Astronomical Journal; electronic versions of all tables are available in the published versio

    Magellan/M2FS Spectroscopy of Galaxy Clusters: Stellar Population Model and Application to Abell 267

    Get PDF
    We report the results of a pilot program to use the Magellan/M2FS spectrograph to survey the galactic populations and internal kinematics of galaxy clusters. For this initial study, we present spectroscopic measurements for 223223 quiescent galaxies observed along the line of sight to the galaxy cluster Abell 267 (z0.23z\sim0.23). We develop a Bayesian method for modeling the integrated light from each galaxy as a simple stellar population, with free parameters that specify redshift (vlos/cv_\mathrm{los}/c) and characteristic age, metallicity ([Fe/H]\mathrm{[Fe/H]}), alpha-abundance ([α/Fe][\alpha/\mathrm{Fe}]), and internal velocity dispersion (σint\sigma_\mathrm{int}) for individual galaxies. Parameter estimates derived from our 1.5-hour observation of A267 have median random errors of σvlos=20 km s1\sigma_{v_\mathrm{los}}=20\ \mathrm{km\ s^{-1}}, σAge=1.2 Gyr\sigma_{\mathrm{Age}}=1.2\ \mathrm{Gyr}, $\sigma_{\mathrm{[Fe/H]}}=0.11\ \mathrm{dex},, \sigma_{[\alpha/\mathrm{Fe}]}=0.07\ \mathrm{dex},and, and \sigma_{\sigma_\mathrm{int}}=20\ \mathrm{km\ s^{-1}}$. In a companion paper, we use these results to model the structure and internal kinematics of A267.Comment: 16 pages, 11 figures, accepted for publication in The Astronomical Journa

    The Electronic and Superconducting Properties of Oxygen-Ordered MgB2 compounds of the form Mg2B3Ox

    Full text link
    Possible candidates for the Mg2B3Ox nanostructures observed in bulk of polycrystalline MgB2 (Ref.1) have been studied using a combination of Z-contrast imaging, electron energy loss spectroscopy (EELS) and first-principles calculations. The electronic structures, phonon modes, and electron phonon coupling parameters are calculated for two oxygen-ordered MgB2 compounds of composition Mg2B3O and Mg2B3O2, and compared with those of MgB2. We find that the density of states for both Mg2B3Ox structures show very good agreement with EELS, indicating that they are excellent candidates to explain the observed coherent oxygen precipitates. Incorporation of oxygen reduces the transition temperature and gives calculated TC values of 18.3 K and 1.6 K for Mg2B3O and Mg2B3O2, respectively.Comment: Submitted to PR

    Investigating Perceptual Congruence Between Data and Display Dimensions in Sonification

    Get PDF
    The relationships between sounds and their perceived meaning and connotations are complex, making auditory perception an important factor to consider when designing sonification systems. Listeners often have a mental model of how a data variable should sound during sonification and this model is not considered in most data:sound mappings. This can lead to mappings that are difficult to use and can cause confusion. To investigate this issue, we conducted a magnitude estimation experiment to map how roughness, noise and pitch relate to the perceived magnitude of stress, error and danger. These parameters were chosen due to previous findings which suggest perceptual congruency between these auditory sensations and conceptual variables. Results from this experiment show that polarity and scaling preference are dependent on the data:sound mapping. This work provides polarity and scaling values that may be directly utilised by sonification designers to improve auditory displays in areas such as accessible and mobile computing, process-monitoring and biofeedback
    corecore