242 research outputs found
Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state
A mixing model derived from first principles describes the bulk density ( BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD = 1 / [LOI/k(1) + (1-LOI) / k(2)], where k(1) and k(2) are the self-packing densities of the pure organic and inorganic components, respectively. The model explained 78 % of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k(1) and k(2) were estimated to be 0.085 + / - 0.0007 g cm(-3) and 1.99 + / - 0.028 g cm(-3), respectively. Based on the fitted organic density (k(1)) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is \u3c = 0.3 cm yr (-1). Thus, tidal peatlands are unlikely to indefinitely survive a higher rate of sea-level rise in the absence of a significant source of mineral sediment. Application of k(2) to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr(-1). Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yr(-1) under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root: shoot ratio, suspended sediment concentration, sediment-capture efficiency, and episodic events
Sundance Film Festival 2012 Report
This is the report of our editors from the Sundance Film Festival, held in Park City, Utah from January 19-29, 2012
Carbon Sequestration And Sediment Accretion In San Francisco Bay Tidal Wetlands
Tidal wetlands play an important role with respect to climate change because of both their sensitivity to sea-level rise and their ability to sequester carbon dioxide from the atmosphere. Policy-based interest in carbon sequestration has increased recently, and wetland restoration projects have potential for carbon credits through soil carbon sequestration. We measured sediment accretion, mineral and organic matter accumulation, and carbon sequestration rates using 137Cs and 210Pb downcore distributions at six natural tidal wetlands in the San Francisco Bay Estuary. The accretion rates were, in general, 0.2–0.5 cm year−1, indicating that local wetlands are keeping pace with recent rates of sea-level rise. Mineral accumulation rates were higher in salt marshes and at low-marsh stations within individual sites. The average carbon sequestration rate based on 210Pb dating was 79 g C m−2 year−1, with slightly higher rates based on 137Cs dating. There was little difference in the sequestration rates among sites or across stations within sites, indicating that a single carbon sequestration rate could be used for crediting tidal wetland restoration projects within the Estuary
Recommended from our members
Climate Change and San Francisco Bay-Delta Tidal Wetlands
Climate change will affect tidal wetlands with higher rates of sea-level rise and higher concentrations of salt in brackish and freshwater tidal systems, in addition to causing increases in atmospheric CO2 concentration, warmer temperatures, and shifts in precipitation. In the San Francisco Bay–Delta, the areas most likely to be affected—brackish and freshwater tidal wetlands—are also the sites with the majority of endemic plant species and the greater biodiversity and productivity. Effects on the San Francisco Bay– Delta estuary are complex and difficult to predict, but a few things are clear. Biodiversity of the tidal wetland system in the San Francisco Bay–Delta region will decline, with subsequent effects on ecosystem functioning and services. Altered plant production, physiological tolerances, and shifts in rates of mortality will modify wetland plant communities in ways not yet predictable. Lower ecosystem productivity from salinity increases will affect both primary and detrital-based food webs. Such changes will cascade via the food webs into invertebrate, bird, and pelagic systems. Tidal wetlands are especially sensitive to processes that climate change will alter. Several of these altered processes are exacerbated by water diversions from the Delta
Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.
Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea-level rise. These results also emphasize the importance of adjacent uplands for long-term marsh survival and incorporating such areas in conservation planning efforts
Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state
A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes that the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD = 1/[LOI/k1 + (1-LOI)/k2], where k1 and k2 are the self-packing densities of the pure organic and inorganic components, respectively. The model explained 78% of the variability in total BD when fitted to 5075 measurements drawn from 33 wetlands distributed around the conterminous United States. The values of k1 and k2 were estimated to be 0.085 ± 0.0007 g cm−3 and 1.99 ± 0.028 g cm−3, respectively. Based on the fitted organic density (k1) and constrained by primary production, the model suggests that the maximum steady state accretion arising from the sequestration of refractory organic matter is ≤ 0.3 cm yr−1. Thus, tidal peatlands are unlikely to indefinitely survive a higher rate of sea-level rise in the absence of a significant source of mineral sediment. Application of k2 to a mineral sediment load typical of East and eastern Gulf Coast estuaries gives a vertical accretion rate from inorganic sediment of 0.2 cm yr−1. Total steady state accretion is the sum of the parts and therefore should not be greater than 0.5 cm yr−1 under the assumptions of the model. Accretion rates could deviate from this value depending on variation in plant productivity, root:shoot ratio, suspended sediment concentration, sediment-capture efficiency, and episodic events
Evaluating Tidal Marsh Sustainability in the Face of Sea-Level Rise: A Hybrid Modeling Approach Applied to San Francisco Bay
Tidal marshes will be threatened by increasing rates of sea-level rise (SLR) over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities.Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models were run over 100 years for 70 combinations of starting elevation, mineral sediment, organic matter, and SLR assumptions. Results were applied spatially to evaluate eight Bay-wide climate change scenarios.Model results indicated that under a high rate of SLR (1.65 m/century), short-term restoration of diked subtidal baylands to mid marsh elevations (-0.2 m MHHW) could be achieved over the next century with sediment concentrations greater than 200 mg/L. However, suspended sediment concentrations greater than 300 mg/L would be required for 100-year mid marsh sustainability (i.e., no elevation loss). Organic matter accumulation had minimal impacts on this threshold. Bay-wide projections of marsh habitat area varied substantially, depending primarily on SLR and sediment assumptions. Across all scenarios, however, the model projected a shift in the mix of intertidal habitats, with a loss of high marsh and gains in low marsh and mudflats.Results suggest a bleak prognosis for long-term natural tidal marsh sustainability under a high-SLR scenario. To minimize marsh loss, we recommend conserving adjacent uplands for marsh migration, redistributing dredged sediment to raise elevations, and concentrating restoration efforts in sediment-rich areas. To assist land managers, we developed a web-based decision support tool (www.prbo.org/sfbayslr)
Invasive Plant Suppresses the Growth of Native Tree Seedlings by Disrupting Belowground Mutualisms
The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat
Are randomly grown graphs really random?
We analyze a minimal model of a growing network. At each time step, a new
vertex is added; then, with probability delta, two vertices are chosen
uniformly at random and joined by an undirected edge. This process is repeated
for t time steps. In the limit of large t, the resulting graph displays
surprisingly rich characteristics. In particular, a giant component emerges in
an infinite-order phase transition at delta = 1/8. At the transition, the
average component size jumps discontinuously but remains finite. In contrast, a
static random graph with the same degree distribution exhibits a second-order
phase transition at delta = 1/4, and the average component size diverges there.
These dramatic differences between grown and static random graphs stem from a
positive correlation between the degrees of connected vertices in the grown
graph--older vertices tend to have higher degree, and to link with other
high-degree vertices, merely by virtue of their age. We conclude that grown
graphs, however randomly they are constructed, are fundamentally different from
their static random graph counterparts.Comment: 8 pages, 5 figure
- …