30 research outputs found

    Assembly of Protein Building Blocks Using a Short Synthetic Peptide

    Get PDF
    Combining proteins or their defined domains offers new enhanced functions. Conventionally, two proteins are either fused into a single polypeptide chain by recombinant means or chemically cross-linked. However, these strategies can have drawbacks such as poor expression (recombinant fusions) or aggregation and inactivation (chemical cross-linking), especially in the case of large multifunctional proteins. We developed a new linking method which allows site-oriented, noncovalent, yet irreversible stapling of modified proteins at neutral pH and ambient temperature. This method is based on two distinct polypeptide linkers which self-assemble in the presence of a specific peptide staple allowing on-demand and irreversible combination of protein domains. Here we show that linkers can either be expressed or be chemically conjugated to proteins of interest, depending on the source of the proteins. We also show that the peptide staple can be shortened to 24 amino acids still permitting an irreversible combination of functional proteins. The versatility of this modular technique is demonstrated by stapling a variety of proteins either in solution or to surfaces

    High intensity intermittent games-based activity and adolescents’ cognition: moderating effect of physical fitness

    Get PDF
    Background: An acute bout of exercise elicits a beneficial effect on subsequent cognitive function in adolescents. The effect of games-based activity, an ecologically valid and attractive exercise model for young people, remains unknown; as does the moderating effect of fitness on the acute exercise-cognition relationship. Therefore, the aim of the present study was to examine the effect of games-based activity on subsequent cognition in adolescents, and the moderating effect of fitness on this relationship. Methods: Following ethical approval, 39 adolescents (12.3 ± 0.7 year) completed an exercise and resting trial in a counterbalanced, randomised crossover design. During familiarisation, participants completed a multi-stage fitness test to predict VO2 peak. The exercise trial consisted of 60-min games-based activity (basketball), during which heart rate was 158 ± 11 beats∙min−1. A battery of cognitive function tests (Stroop test, Sternberg paradigm, trail making and d2 tests) were completed 30-min before, immediately following and 45-min following the basketball. Results: Response times on the complex level of the Stroop test were enhanced both immediately (p = 0.021) and 45-min (p = 0.035) post-exercise, and response times on the five item level of the Sternberg paradigm were enhanced immediately post-exercise (p = 0.023). There were no effects on the time taken to complete the trail making test or any outcome of the d2 test. In particular, response times were enhanced in the fitter adolescents 45-min post-exercise on both levels of the Stroop test (simple, p = 0.005; complex, p = 0.040) and on the three item level of the Sternberg paradigm immediately (p = 0.017) and 45-min (p = 0.008) post-exercise. Conclusions: Games-based activity enhanced executive function and working memory scanning speed in adolescents, an effect particularly evident in fitter adolescents, whilst the high intensity intermittent nature of games-based activity may be too demanding for less fit children

    Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity

    No full text
    Botulinum neurotoxins (BoNTs) are highly successful protein therapeutics. Over 40 naturally occurring BoNTs have been described thus far and, of those, only 2 are commercially available for clinical use. Different members of the BoNT family present different biological properties but share a similar multi-domain structure at the molecular level. In nature, BoNTs are encoded by DNA in producing clostridial bacteria and, as such, are amenable to recombinant production through insertion of the coding DNA into other bacterial species. This, in turn, creates possibilities for protein engineering. Here, we review the production of BoNTs by the natural host and also recombinant production approaches utilised in the field. Applications of recombinant BoNT-production include the generation of BoNT-derived domain fragments, the creation of novel BoNTs with improved performance and enhanced therapeutic potential, as well as the advancement of BoNT vaccines. In this article, we discuss site directed mutagenesis, used to affect the biological properties of BoNTs, including approaches to alter their binding to neurons and to alter the specificity and kinetics of substrate cleavage. We also discuss the target secretion inhibitor (TSI) platform, in which the neuronal binding domain of BoNTs is substituted with an alternative cellular ligand to re-target the toxins to non-neuronal systems. Understanding and harnessing the potential of the biological diversity of natural BoNTs, together with the ability to engineer novel mutations and further changes to the protein structure, will provide the basis for increasing the scope of future BoNT-based therapeutics

    Improved stability of a protein vaccine through elimination of a partially unfolded state

    No full text
    Ricin is a potent toxin presenting a threat as a biological weapon. The holotoxin consists of two disulfide-linked polypeptides: an enzymatically active A chain (RTA) and a galactose/N-acetylgalactosamine-binding B chain. Efforts to develop an inactivated version of the A chain as a vaccine have been hampered by limitations of stability and solubility. Previously, recombinant truncated versions of the 267-amino-acid A chain consisting of residues 1–33/44–198 or 1–198 were designed by protein engineering to overcome these limits and were shown to be effective and nontoxic as vaccines in mice. Herein we used CD, dynamic light scattering, fluorescence, and Fourier-transform infrared spectroscopy to examine the biophysical properties of these proteins. Although others have found that recombinant RTA (rRTA) adopts a partially unfolded, molten globule–like state at 45°C, rRTA 1–33/44–198 and 1–198 are significantly more thermostable, remaining completely folded at temperatures up to 53°C and 51°C, respectively. Deleting both an exposed loop region (amino acids 34–43) and the C-terminal domain (199–267) contributed to increased thermostability. We found that chemically induced denaturation of rRTA, but not the truncated variants, proceeds through at least a three-state mechanism. The intermediate state in rRTA unfolding has a hydrophobic core accessible to ANS and an unfolded C-terminal domain. Removing the C-terminal domain changed the mechanism of rRTA unfolding, eliminating a tendency to adopt a partially unfolded state. Our results support the conclusion that these derivatives are superior candidates for development as vaccines against ricin and suggest an approach of reduction to minimum essential domains for design of more thermostable recombinant antigens
    corecore