1,253 research outputs found

    Online fluorescence monitoring of effluent organic matter in wastewater treatment plants

    Get PDF
    YesWastewater treatment is an energy-intensive operation. Energy consumption is forecast to increase by 60% in the forthcoming decade due to tightened legislation surrounding the discharge of final effluent to watercourses. Treatment plants rely on the time-consuming and unreliable biochemical oxygen demand to assess the quality of final effluent, leading to process inefficiencies. Here, the authors show that fluorescence spectroscopy is a robust technique for real-time monitoring of changes in effluent quality. Three portable fluorimeters were installed for one month at the final effluent discharge point of a large municipal wastewater treatment plant. The authors show that organic matter composition of the wastewater varies diurnally depending on the flow rate and antecedent rainfall. High fluorescence intensity and ammonia are attributed to sewage sludge liquor, which is regularly discharged to the treatment plant. Moreover, elevated fluorescence intensities were recorded as a result of process failure following a power outage. The study shows that online fluorescence analysis is capable of detecting both minor changes in effluent quality and issues with treatment process performance.European Commission Framework Programme 7, Marie Curie IEF (PIEF-GA-2012-329962) and the Core Program, ANCS (PN 16.40.01.01)

    Introduction

    Get PDF

    Emission Spectrum of a Dipole in a Semi-infinite Periodic Dielectric Structure: Effect of the Boundary

    Full text link
    The emission spectrum of a dipole embedded in a semi-infinite photonic crystal is calculated. For simplicity we study the case in which the dielectric function is sinusoidally modulated only along the direction perpendicular to the boundary surface plane. In addition to oscillations of the emission rate with the distance of the dipole from the interface we also observed that the shape of the emission spectrum srongly depends on the \em initial \em phase of the dielectric modulation. When the direction of light propagation inside the periodic structure is not normal to the boundary surface plane we observed aditional singularities in the emission spectrum, which arise due to different angle-dependence of the Bragg stop-band for TETE and TMTM polarizations.Comment: 14 pages, 6 figures, to appear in Phys Rev

    The first ever anti-football painting: A consideration of the soccer match in John Singer Sargent’s "Gassed"

    Get PDF
    The paper presents a discussion of Gassed, a large oil painting by John Singer Sargent displayed at the Imperial War Museum in London. Completed in 1919, Gassed is the major achievement from Sargent’s commission as an official war artist at the appointment of the British War Memorials Committee during the latter period of World War I. Prominent in the painting is a group of soldiers, blinded by a mustard gas attack, being lead to a casualty clearing station tent. In the distant background of the painting, another group of soldiers can be seen kitted out in football attire playing a match. The significance of this football imagery is our point of enquiry. As our title suggests, some recent interpretations regard the painting as offering critical reflection, from the time, about the symbolic links between sport and war. However, while the painting may certainly be left open to this type of viewer interpretation, archival and secondary resource material research does not support such a critical intention by the artist. Yet, nor is there evidence that Sargent’s intention was the projection of war-heroism. Rather, Sargent’s endeavour to faithfully represent what he observed allows Gassed to be regarded as a visual record of routine activity behind the lines and of football as an aspect of the daily life of British soldiers during the Great War

    Coastal sea level rise with warming above 2°C

    Get PDF
    Two degrees of global warming above the preindustrial level is widely suggested as an appropriate threshold beyond which climate change risks become unacceptably high. This “2 °C” threshold is likely to be reached between 2040 and 2050 for both Representative Concentration Pathway (RCP) 8.5 and 4.5. Resulting sea level rises will not be globally uniform, due to ocean dynamical processes and changes in gravity associated with water mass redistribution. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 °C goal. By 2040, with a 2 °C warming under the RCP8.5 scenario, more than 90% of coastal areas will experience sea level rise exceeding the global estimate of 0.2 m, with up to 0.4 m expected along the Atlantic coast of North America and Norway. With a 5 °C rise by 2100, sea level will rise rapidly, reaching 0.9 m (median), and 80% of the coastline will exceed the global sea level rise at the 95th percentile upper limit of 1.8 m. Under RCP8.5, by 2100, New York may expect rises of 1.09 m, Guangzhou may expect rises of 0.91 m, and Lagos may expect rises of 0.90 m, with the 95th percentile upper limit of 2.24 m, 1.93 m, and 1.92 m, respectively. The coastal communities of rapidly expanding cities in the developing world, and vulnerable tropical coastal ecosystems, will have a very limited time after midcentury to adapt to sea level rises unprecedented since the dawn of the Bronze Age

    Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    Get PDF
    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol layers located between about 2.6 and 3.6 km were observed by the Raman lidar on May 25 and May 27. The airborne measurements and lidar retrievals indicated that these layers, which were likely smoke produced by Siberian forest fires, were primarily composed of relatively large particles (r(sub eff) approximately 0.23 micrometers), and that the layers were relatively nonabsorbing (omega(sub o) approximately 0.96-0.98). Preliminary results show that major modifications that were made to the Raman lidar system during 2004 have dramatically improved the sensitivity in the aerosol and water vapor channels and reduced random errors in the aerosol scattering ratio and water vapor retrievals by an order of magnitude

    Differential Regulation of Tyrosinase Activity in Skin of White and Black Individuals In Vivo by Topical Retinoic Acid

    Get PDF
    Tyrosinase activity is a key determinant of melanin production in skin. Because retinoic acid regulates tyrosinase activity in melanoma cells, we analyzed modulation of pigmentation in vivo by retinoic acid. Black and white subjects were either not treated, or treated topically for 4 d under occlusion with vehicle, retinoic acid (0.1%), or the irritant sodium lauryl sulfate (2%). In untreated skin, tyrosinase activity and melanin content were significantly greater (2.3 times, and 3.2 times, respectively) in blacks versus whites. Four days of treatment with topical retinoic acid did not alter tyrosinase activity or melanin content in black skin. In contrast, retinoic acid treatment significantly induced (2.7 times, n = 8) tyrosinase activity, compared to vehicle treatment, in white skin. Melanin content, however, remained unchanged at 4 d. In separate experiments, tyrosinase activity in white subjects (n = 25) was increased 16% (p = 0.01) in sodium lauryl sulfate – treated skin, and 77% (p = 0.0005) in retinoic acid – treated skin, compared to vehicle-treated skin. The effect of retinoic acid on tyrosinase activity could be differentiated from non-specific irritation, because tyrosinase activity in retinoic acid – treated skin was significantly greater (52%, p = 0.004) than sodium lauryl sulfate-treated skin. Similar results were obtained with the dihydroxyphenylalanine reaction done on vehicle, sodium lauryl sulfate-, and retinoic acid – treated white skin. Northern analysis (n = 6) and semi-quantitative polymerase chain reaction (n = 6) demonstrated that retinoic acid treatment did not alter tyrosinase mRNA levels in white skin. Western analysis revealed that induction of tyrosinase activity by retinoic acid also was not associated with increased tyrosinase protein content (n = 9), indicating that regulation of tyrosinase activity by retinoic acid occurs through a post-translational mechanism. These data demonstrate that low tyrosinase activity in white skin in vivio is retinoic acid inducible and high tyrosinase activity in black skin in vivo is neither further induced nor reduced by retinoic aci

    Indirect learning: how emerging-market firms grow in developed markets

    Get PDF
    Some emerging-market firms have recently achieved substantial growth in developed markets despite having had little prior experience in these markets. What explains the performance of these firms? Building on the organizational learning literature, the authors argue that indirect learning (i.e., learning from the experience of others) plays a crucial role in explaining this phenomenon. Specifically, they propose that emerging-market firms that grow in developed markets overcome their lack of direct experience in such markets by learning indirectly through their leaders, competitors, and interfirm networks. The authors test their thesis by comparing the international growth in developed markets of a sample of emerging-market firms (116 Indian firms) with a sample of developed-market firms (160 U.K. firms). The results support the authors' thesis about the importance of indirect learning in explaining the international growth of emerging-market (relative to developed-market) firms in developed markets. The authors discuss the implications of these findings for policy makers in the areas of higher education, competition policy, and international trade as well as for managers in the areas of middle-management recruitment, competitor analysis and tracking, and managing interfirm networks

    Charge and Current Sum Rules in Quantum Media Coupled to Radiation

    Full text link
    This paper concerns the equilibrium bulk charge and current density correlation functions in quantum media, conductors and dielectrics, fully coupled to the radiation (the retarded regime). A sequence of static and time-dependent sum rules, which fix the values of certain moments of the charge and current density correlation functions, is obtained by using Rytov's fluctuational electrodynamics. A technique is developed to extract the classical and purely quantum-mechanical parts of these sum rules. The sum rules are critically tested in the classical limit and on the jellium model. A comparison is made with microscopic approaches to systems of particles interacting through Coulomb forces only (the non-retarded regime). In contrast with microscopic results, the current-current correlation function is found to be integrable in space, in both classical and quantum regimes.Comment: 19 pages, 1 figur
    • …
    corecore