319 research outputs found
Measurements of stratospheric constituents by ISAMS
ISAMS is a limb sounding radiometer flying on the UARS, and designed to measure temperature, pressure, O3, CO, NO, NO2, N2O5, HNO3, CH4, H2O, N2O, and aerosol. Its capabilities are described, together with the present status of validation of its data products, and plans for future improvement
High level secretion of cellobiohydrolases by Saccharomyces cerevisiae
<p>Abstract</p> <p>Background</p> <p>The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of <it>Saccharomyces cerevisiae </it>for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases.</p> <p>Results</p> <p>We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by <it>S. cerevisiae</it>. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of <it>cbh1 </it>and <it>cbh2 </it>genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™) to ethanol by CBH-producing <it>S. cerevisiae </it>strains with the addition of beta-glucosidase.</p> <p>Conclusions</p> <p>Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.</p
Level 2 processor and auxiliary data for ESA Version 8 final full mission analysis of MIPAS measurements on ENVISAT
High quality long-term data sets of altitude-resolved measurements of the atmospheric composition are important because they can be used both to study the evolution of the atmosphere and as a benchmark for future missions. For the final ESA reprocessing of MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) on ENVISAT (ENViromental SATellite) data, numerous improvements were implemented in the Level 2 (L2) processor Optimised Retrieval Model (ORM) version 8.22 (V8) and its auxiliary data. The implemented changes involve all aspects of the processing chain, from the modelling of the measurements with the handling of the horizontal inhomogeneities along the line of sight to the use of the optimal estimation technique to retrieve the minor species, from a more sensitive approach to detecting the spectra affected by clouds to a refined method for identifying low quality products. Improvements in the modelling of the measurements were also obtained with an update of the used spectroscopic data and of the databases providing the a priori knowledge of the atmosphere. The HITRAN_mipas_pf4.45 spectroscopic database was finalised with new spectroscopic data verified with MIPAS measurements themselves, while recently measured cross-sections were used for the heavy molecules. The Level 2 Initial Guess (IG2) data set, containing the climatology used by the MIPAS L2 processor to generate the initial guess and interfering species profiles when the retrieved profiles from previous scans are not available, was improved taking into account the diurnal variation of the profiles defined using climatologies from both measurements and models. Horizontal gradients were generated using the ECMWF ERA-Interim data closest in time and space to the MIPAS data. Further improvements in the L2 V8 products derived from the use of the L1b V8 products, which were upgraded to reduce the instrumental temporal drift and to handle the abrupt changes in the calibration gain. The improvements introduced into the ORM V8 L2 processor and its upgraded auxiliary data, together with the use of the L1b V8 products, lead to the generation of the MIPAS L2 V8 products, which are characterised by an increased accuracy, better temporal stability and a greater number of retrieved species
Level 2 processor and auxiliary data for ESA Version 8 final full mission analysis of MIPAS measurements on ENVISAT
High quality long-term data sets of altitude-resolved measurements of the atmospheric composition are important because they can be used both to study the evolution of the atmosphere and as a benchmark for future missions. For the final ESA reprocessing of MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) on ENVISAT (ENViromental SATellite) data, numerous improvements were implemented in the Level 2 (L2) processor Optimised Retrieval Model (ORM) version 8.22 (V8) and its auxiliary data. The implemented changes involve all aspects of the processing chain, from the modelling of the measurements with the handling of the horizontal inhomogeneities along the line of sight to the use of the optimal estimation technique to retrieve the minor species, from a more sensitive approach to detecting the spectra affected by clouds to a refined method for identifying low quality products. Improvements in the modelling of the measurements were also obtained with an update of the used spectroscopic data and of the databases providing the a priori knowledge of the atmosphere. The HITRAN_mipas_pf4.45 spectroscopic database was finalised with new spectroscopic data verified with MIPAS measurements themselves, while recently measured cross-sections were used for the heavy molecules. The Level 2 Initial Guess (IG2) data set, containing the climatology used by the MIPAS L2 processor to generate the initial guess and interfering species profiles when the retrieved profiles from previous scans are not available, was improved taking into account the diurnal variation of the profiles defined using climatologies from both measurements and models. Horizontal gradients were generated using the ECMWF ERA-Interim data closest in time and space to the MIPAS data. Further improvements in the L2 V8 products derived from the use of the L1b V8 products, which were upgraded to reduce the instrumental temporal drift and to handle the abrupt changes in the calibration gain. The improvements introduced into the ORM V8 L2 processor and its upgraded auxiliary data, together with the use of the L1b V8 products, lead to the generation of the MIPAS L2 V8 products, which are characterised by an increased accuracy, better temporal stability and a greater number of retrieved species
Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.
Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
Effects of danicamtiv, a novel cardiac myosin activator, in heart failure with reduced ejection fraction: experimental data and clinical results from a phase 2a trial
Aims:
Both left ventricular (LV) and left atrial (LA) dysfunction and remodelling contribute to adverse outcomes in heart failure with reduced ejection fraction (HFrEF). Danicamtiv is a novel, cardiac myosin activator that enhances cardiomyocyte contraction.
Methods and results:
We studied the effects of danicamtiv on LV and LA function in non‐clinical studies (ex vivo : skinned muscle fibres and myofibrils; in vivo : dogs with heart failure) and in a randomized, double‐blind, single‐ and multiple‐dose phase 2a trial in patients with stable HFrEF (placebo, n = 10; danicamtiv, n = 30; 50–100 mg twice daily for 7 days). Danicamtiv increased ATPase activity and calcium sensitivity in LV and LA myofibrils/muscle fibres. In dogs with heart failure, danicamtiv improved LV stroke volume (+10.6 mL, P < 0.05) and LA emptying fraction (+10.7%, P < 0.05). In patients with HFrEF (mean age 60 years, 25% women, ischaemic heart disease 48%, mean LV ejection fraction 32%), treatment‐emergent adverse events, mostly mild, were reported in 17 patients (57%) receiving danicamtiv and 4 patients (40%) receiving placebo. Danicamtiv (at plasma concentrations ≥2000 ng/mL) increased stroke volume (up to +7.8 mL, P < 0.01), improved global longitudinal (up to −1.0%, P < 0.05) and circumferential strain (up to −3.3%, P < 0.01), decreased LA minimal volume index (up to −2.4 mL/m2, P < 0.01) and increased LA function index (up to 6.1, P < 0.01), when compared with placebo.
Conclusions:
Danicamtiv was well tolerated and improved LV systolic function in patients with HFrEF. A marked improvement in LA volume and function was also observed in patients with HFrEF, consistent with pre‐clinical findings of direct activation of LA contractility
Multidimensional responses of grassland stability to eutrophication
Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change
Local Loss and Spatial Homogenization of Plant Diversity Reduce Ecosystem Multifunctionality
Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands—those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)—had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities
- …