36 research outputs found

    New [18F]Tracers for Alzheimer's Disease Imaging. Labeling Synthesis And Biological Testing

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia. Characteristic changes in an AD brain are the formation of β-amyloid protein (Aβ) plaques and neurofibrillary tangles, though other alterations in the brain have also been connected to AD. No cure is available for AD and it is one of the leading causes of death among the elderly in developed countries. Liposomes are biocompatible and biodegradable spherical phospholipid bilayer vesicles that can enclose various compounds. Several functional groups can be attached on the surface of liposomes in order to achieve long-circulating target-specific liposomes. Liposomes can be utilized as drug carriers and vehicles for imaging agents. Positron emission tomography (PET) is a non-invasive imaging method to study biological processes in living organisms. In this study using nucleophilic 18F-labeling synthesis, various synthesis approaches and leaving groups for novel PET imaging tracers have been developed to target AD pathology in the brain. The tracers were the thioflavin derivative [18F]flutemetamol, curcumin derivative [18F]treg-curcumin, and functionalized [18F]nanoliposomes, which all target Aβ in the AD brain. These tracers were evaluated using transgenic AD mouse models. In addition, 18F-labeling synthesis was developed for a tracer targeting the S1P3 receptor. The chosen 18F-fluorination strategy had an effect on the radiochemical yield and specific activity of the tracers. [18F]Treg-curcumin and functionalized [18F]nanoliposomes had low uptake in AD mouse brain, whereas [18F]flutemetamol exhibited the appropriate properties for preclinical Aβ-imaging. All of these tracers can be utilized in studies of the pathology and treatment of AD and related diseases.Alzheimerin tauti on yleisin dementiasairaus. Tyypillisimmät Alzheimerin taudin aiheuttamat muutokset ovat β-amyloidi(Aβ)proteiinista koostuvien plakkien sekä hermosäievyyhteiden muodostuminen aivoihin. Alzheimerin tautiin on liitetty myös muita aivomuutoksia. Tällä hetkellä Alzheimerin tautiin ei ole parantavaa hoitoa. Ikääntyneiden keskuudessa Alzheimerin tauti on yksi tavallisimmista kuolemaan johtavista syistä. Liposomit ovat biologisesti yhteensopivia, luontaisesti hajoavia, pallomaisia kaksoisfosfolipidikerroksellisia vesikkeleitä, jotka voivat sulkea sisälleen erilaisia yhdisteitä. Liposomin pintaan voidaan liittää useita erilaisia funktionaalisia ryhmiä, jotta saadaan elimistössä pitkään kiertäviä, tarkoin kohdennettuja liposomeja. Liposomeja voidaan käyttää lääkeaineiden ja kuvantamisaineiden kuljettimina. Positroniemissiotomografia (PET) on kuvantamismenetelmä, jonka avulla voidaan tutkia biologisia prosesseja elävässä eliössä. Tässä tutkimuksessa nukleofiiliseen 18F-fluorileimaukseen perustuvien synteesireittien avulla kehitettiin uusia merkkiaineita Alzheimerin taudin aivomuutosten tutkimiseen. Kehitetyt merkkiaineet olivat tioflaviinijohdos [18F]flutemetamoli, kurkumiinijohdos [18F]treg-kurkumiini sekä funktionalisoituja [18F]nanoliposomeja. Kaikki nämä yhdisteet kohdistuivat Alzheimerin taudin Aβ plakkeihin. Merkkiaineet evaluoitiin käyttäen Alzheimerin tautia mallintavia siirtogeenihiiriä. Lisäksi kehitettiin S1P3-reseptoriin kohdentuvan merkkiaineen 18F-leimaussynteesi. Valitulla 18F-leimaussynteesistrategialla on vaikutusta merkkiaineen radiokemialliseen saantoon ja ominaisaktiivisuuteen. [18F]Treg-kurkumiini sekä funktionaaliset [18F]nanoliposomit kertyivät vain vähän koe-eläimen aivoihin, kun taas [18F]flutemetamoli osoittautui sopivan käyttökelpoiseksi prekliiniseen kuvantamiseen. Kaikkia tässä työssä kehitettyjä merkkiaineita voidaan käyttää tutkittaessa Alzheimerin taudin ja samanlaisten sairauksien patologiaa ja hoitoa.Siirretty Doriast

    applicability of 11c pib micro pet imaging for in vivo follow up of anti amyloid treatment effects in app23 mouse model

    Get PDF
    Abstract In this study, we evaluated the anti-amyloid effect of functionalized nanoliposomes (mApoE-PA-LIP) in a mouse model of Alzheimer's disease with use of positron emission tomography and β-amyloid (Aβ)–targeted tracer [11C]Pittsburgh compound B ([11C]PIB). APP23 mice were injected with mApoE-PA-LIP or saline (3 times per week for 3 weeks) and [11C]PIB imaging was performed at baseline, after the treatment and after 3 months follow-up period, accompanied by Aβ immunohistochemistry and ELISA. After the treatment, [11C]PIB binding ratios between mApoE-PA-LIP and saline groups were equivalent in all analyzed brain regions; however, in the saline group, binding ratios increased from the baseline, whereas no increase was detected in the mApoE-PA-LIP group. During the additional follow-up, [11C]PIB binding increased significantly from baseline in both groups, and binding ratios correlated with the immunohistochemically defined Aβ load. This study further supports the use of [11C]PIB positron emission tomography imaging as a biomarker of Aβ deposition in APP23 mice and highlights the benefits of noninvasive follow-up, that is, using baseline data for animal stratification and normalization of treatment effects to baseline values, for future anti-amyloid treatment studies

    (S)-[18F]THK5117 brain uptake is associated with Aβ plaques and MAO-B enzyme in a mouse model of Alzheimer's disease

    Get PDF
    The mouse model of beta-amyloid (Aβ) deposition, APP/PS1-21, exhibits high brain uptake of the tau-tracer (S)-[18F]THK5117, although no neurofibrillary tangles are present in this mouse model. For this reason we investigated (S)-[18F]THK5117 off-target binding to Aβ plaques and MAO-B enzyme in APP/PS1-21 transgenic (TG) mouse model of Aβ deposition. APP/PS1-21 TG and wild-type (WT) control mice in four different age groups (2-26 months) were imaged antemortem by positron emission tomography with (S)-[18F]THK5117, and then brain autoradiography. Additional animals were used for immunohistochemical staining and MAO-B enzyme blocking study with deprenyl pre-treatment. Regional standardized uptake value ratios for the cerebellum revealed a significant temporal increase in (S)-[18F]THK5117 uptake in aged TG, but not WT, brain. Immunohistochemical staining revealed a similar increase in Aβ plaques but not endogenous hyper-phosphorylated tau or MAO-B enzyme, and ex vivo autography showed that uptake of (S)-[18F]THK5117 co-localized with the amyloid pathology. Deprenyl hydrochloride pre-treatment reduced the binding of (S)-[18F]THK5117 in the neocortex, hippocampus, and thalamus. This study's findings suggest that increased (S)-[18F]THK5117 binding in aging APP/PS1-21 TG mice is mainly due to increasing Aβ deposition, and to a lesser extent binding to MAO-B enzyme, but not hyper-phosphorylated tau

    Insights into disseminated MS brain pathology with multimodal diffusion tensor and PET imaging

    Get PDF
    Objective To evaluate in vivo the co-occurrence of microglial activation and microstructural white matter (WM) damage in the MS brain and to examine their association with clinical disability.Methods 18-kDa translocator protein (TSPO) brain PET imaging was performed for evaluation of microglial activation by using the radioligand [11C](R)-PK11195. TSPO binding was evaluated as the distribution volume ratio (DVR) from dynamic PET images. Diffusion tensor imaging (DTI) and conventional MRI (cMRI) were performed at the same time. Mean fractional anisotropy (FA) and mean (MD), axial, and radial (RD) diffusivities were calculated within the whole normal-appearing WM (NAWM) and segmented NAWM regions appearing normal in cMRI. Fifty-five patients with MS and 15 healthy controls (HCs) were examined.Results Microstructural damage was observed in the NAWM of the MS brain. DTI parameters of patients with MS were significantly altered in the NAWM compared with an age- and sex-matched HC group: mean FA was decreased, and MD and RD were increased. These structural abnormalities correlated with increased TSPO binding in the whole NAWM and in the temporal NAWM (p Conclusions Widespread structural disruption in the NAWM is linked to neuroinflammation, and both phenomena associate with clinical disability. Multimodal PET and DTI allow in vivo evaluation of widespread MS pathology not visible using cMRI.</div

    Brain amyloid load and its associations with cognition and vascular risk factors in FINGER study

    Get PDF
    To investigate brain amyloid pathology in a dementia-risk population defined as cardiovascular risk factors, aging, and dementia risk (CAIDE) score of at least 6 but with normal cognition and to examine associations between brain amyloid load and cognitive performance and vascular risk factors. Twenty participants (42%) had a positive PiB-PET on visual analysis. The PiB-positive group performed worse in executive functioning tests, included more participants with APOE ε4 allele (50%), and showed slightly better glucose homeostasis compared to PiB-negative participants. PiB-positive and -negative participants did not differ significantly in other cognitive domain scores or other vascular risk factors. There was no significant difference in Fazekas score between the PiB groups. A subgroup of 48 individuals from the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) main study participated in brain 11C-Pittsburgh compound B (PiB)-PET imaging, brain MRI, and neuropsychological assessment at the beginning of the study. Lifestyle/vascular risk factors were determined as body mass index, blood pressure, total and low-density lipoprotein cholesterol, and glucose homeostasis model assessment. White matter lesions were visually rated from MRIs by a semiquantitative Fazekas score. The high percentage of PiB-positive participants provides evidence of a successful recruitment process of the at-risk population in the main FINGER intervention trial. The results suggest a possible association between early brain amyloid accumulation and decline in executive functions. APOE ε4 was clearly associated with amyloid positivity, but no other risk factor was found to be associated with positive PiB-PET. OBJECTIVE RESULTS METHODS CONCLUSION

    Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study

    Get PDF
    Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aβ) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD

    Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study

    Get PDF
    Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease.Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (A beta) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed.Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG).Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.</p
    corecore