7 research outputs found

    Regulating craving by anticipating positive and negative outcomes : a multivariate pattern analysis and network connectivity approach

    Get PDF
    During self-control, we may resist short-term temptations in order to reach a favorable future (e.g., resisting cake to stay healthy). The neural basis of self-control is typically attributed to “cold,” unemotional cognitive control mechanisms which inhibit affect-related regions via the prefrontal cortex (PFC). Here, we investigate the neural underpinnings of regulating cravings by mentally evoking the positive consequences of resisting a temptation (e.g., being healthy) as opposed to evoking the negative consequences of giving in to a temptation (e.g., becoming overweight). It is conceivable that when using these types of strategies, regions associated with emotional processing [e.g., striatum, ventromedial prefrontal cortex (vmPFC)] are involved in addition to control-related prefrontal and parietal regions. Thirty-one participants saw pictures of unhealthy snacks in the fMRI scanner and, depending on the trial, regulated their craving by thinking of the positive consequences of resisting, or the negative consequences of not resisting. In a control condition, they anticipated the pleasure of eating and thus, allowed the craving to occur (now-condition). In line with previous studies, we found activation of a cognitive control network during self-regulation. In the negative future thinking condition, the insula was more active than in the positive condition, while there were no activations that were stronger in the positive (> negative) future thinking condition. However, additionally, multivariate pattern analysis showed that during craving regulation, information about the valence of anticipated emotions was present in the vmPFC, the posterior cingulate cortex (PCC) and the insula. Moreover, a network including vmPFC and PCC showed higher connectivity during the positive (> negative) future thinking condition. Since these regions are often associated with affective processing, these findings suggest that “hot,” affective processes may, at least in certain circumstances, play a role in self-control

    A fast and intuitive method for calculating dynamic network reconfiguration and node flexibility

    Get PDF
    Dynamic interactions between brain regions, either during rest or performance of cognitive tasks, have been studied extensively using a wide variance of methods. Although some of these methods allow elegant mathematical interpretations of the data, they can easily become computationally expensive or difficult to interpret and compare between subjects or groups. Here, we propose an intuitive and computationally efficient method to measure dynamic reconfiguration of brain regions, also termed flexibility. Our flexibility measure is defined in relation to an a-priori set of biologically plausible brain modules (or networks) and does not rely on a stochastic data-driven module estimation, which, in turn, minimizes computational burden. The change of affiliation of brain regions over time with respect to these a-priori template modules is used as an indicator of brain network flexibility. We demonstrate that our proposed method yields highly similar patterns of whole-brain network reconfiguration (i.e., flexibility) during a working memory task as compared to a previous study that uses a data-driven, but computationally more expensive method. This result illustrates that the use of a fixed modular framework allows for valid, yet more efficient estimation of whole-brain flexibility, while the method additionally supports more fine-grained (e.g. node and group of nodes scale) flexibility analyses restricted to biologically plausible brain networks

    Regulating Craving by Anticipating Positive and Negative Outcomes: A Multivariate Pattern Analysis and Network Connectivity Approach

    Get PDF
    During self-control, we may resist short-term temptations in order to reach a favorable future (e.g., resisting cake to stay healthy). The neural basis of self-control is typically attributed to “cold,” unemotional cognitive control mechanisms which inhibit affect-related regions via the prefrontal cortex (PFC). Here, we investigate the neural underpinnings of regulating cravings by mentally evoking the positive consequences of resisting a temptation (e.g., being healthy) as opposed to evoking the negative consequences of giving in to a temptation (e.g., becoming overweight). It is conceivable that when using these types of strategies, regions associated with emotional processing [e.g., striatum, ventromedial prefrontal cortex (vmPFC)] are involved in addition to control-related prefrontal and parietal regions. Thirty-one participants saw pictures of unhealthy snacks in the fMRI scanner and, depending on the trial, regulated their craving by thinking of the positive consequences of resisting, or the negative consequences of not resisting. In a control condition, they anticipated the pleasure of eating and thus, allowed the craving to occur (now-condition). In line with previous studies, we found activation of a cognitive control network during self-regulation. In the negative future thinking condition, the insula was more active than in the positive condition, while there were no activations that were stronger in the positive (> negative) future thinking condition. However, additionally, multivariate pattern analysis showed that during craving regulation, information about the valence of anticipated emotions was present in the vmPFC, the posterior cingulate cortex (PCC) and the insula. Moreover, a network including vmPFC and PCC showed higher connectivity during the positive (> negative) future thinking condition. Since these regions are often associated with affective processing, these findings suggest that “hot,” affective processes may, at least in certain circumstances, play a role in self-control

    Anticipating the good and the bad : a study on the neural correlates of bivalent emotion anticipation and their malleability via attentional deployment

    No full text
    In everyday life, we often deliberate about affective outcomes of decisions which can be described as ambivalent; i.e. positive and negative at the same time. For example, when looking forward to meet a dear friend at her/his favorite concert although one dislikes the music that is being performed. Thus, anticipation of bivalent emotions and their volitional regulation is an important ingredient of everyday choices. However, previous studies investigating neural substrates involved in anticipating emotional events mostly focused on anticipating either negative emotions (punishment) or positive emotions (reward) in isolation, thus inducing either of them separately. Furthermore, these studies rather focused on the effortful down-regulation of affect (i.e. reducing negative or positive affect), whereas such conflict situations may also require us to deploy attention on and thereby upregulate anticipated emotions in order to resolve a decision conflict (e.g., by focusing on positive consequences while orienting away from negative consequences of that same situation). To address this gap, we performed a series of three fMRI-experiments using simple visual and auditory stimuli in order to (i) determine the neural correlates involved when anticipating a bivalent affective outcome that is both positive and negative at the same time – related to a conflict situation and (ii) investigate their malleability during anticipation via voluntary emotion regulation using attentional focusing. In these studies, we (i) demonstrate that brain areas involved in anticipating positive (ventral striatum) and negative (anterior insula) emotional events are co-activated when anticipating the occurrence of both punishment and reward at the same time and (ii) provide evidence that attention on either the positive or the negative correlates with a shift in activations of these co-activated neural networks and associated anticipated emotions towards either the positive (increased activity in ventral striatum, ventromedial prefrontal cortex, posterior cingulate cortex) or the negative (increased activity in insula) aspect of the upcoming bivalent outcome. In summary, we provide self-report and neural evidence for the assumption that affective brain systems associated with the processing of bivalent anticipated emotions can be voluntarily controlled by cognitive emotion regulation strategies

    Data_Sheet_1_The role of anticipated emotions in self-control: linking self-control and the anticipatory ability to engage emotions associated with upcoming events.CSV

    No full text
    Self-control is typically attributed to “cold” cognitive control mechanisms that top-down influence “hot” affective impulses or emotions. In this study we tested an alternative view, assuming that self-control also rests on the ability to anticipate emotions directed toward future consequences. Using a behavioral within-subject design including an emotion regulation task measuring the ability to voluntarily engage anticipated emotions towards an upcoming event and a self-control task in which subjects were confronted with a variety of everyday conflict situations, we examined the relationship between self-control and anticipated emotions. We found that those individuals (n = 33 healthy individuals from the general population) who were better able to engage anticipated emotions to an upcoming event showed stronger levels of self-control in situations where it was necessary to resist short-term temptations or to endure short-term aversions to achieve long-term goals. This finding suggests that anticipated emotions may play a functional role in self-control-relevant deliberations with respect to possible future consequences and are not only inhibited top-down as implied by “dual system” views on self-control.</p
    corecore