49 research outputs found

    Factor VII activating protease (FSAP) influences vascular remodeling in the mouse hind limb ischemia model

    Get PDF
    Background: Investigations in factor VII activating protease (FSAP)-/- mice suggest a role for FSAP in stroke, thrombosis and neointima formation. Here, we analyzed the role of FSAP in vascular remodeling processes related to arteriogenesis and angiogenesis in the mouse hind limb ischemia model. Methods and results: Femoral artery ligation was performed in mice and exogenous FSAP was injected locally to examine its effect on arteriogenesis in the adductor and angiogenesis in the gastrocnemius muscle over 21 days. Perfusion was decreased by FSAP, which was reflected in a lower arterial diameter and was associated with reduced monocyte infiltration in the adductor muscle. There was increased angiogenesis in the gastrocnemius muscle triggered indirectly by less blood supply to the lower limb. Comparison of wild-type (WT) and FSAP-/- mice showed that perfusion was not different between the genotypes but there were 2.5-fold more collateral arteries in the adductor muscle of FSAP-/- mice at day 21. This was associated with a higher infiltration of monocytes at day 3. Capillary density in the gastrocnemius muscle was not altered. Activity of the two major proteolytic pathways associated with vascular remodeling; matrix metalloprotease (MMP)-9 and urokinase-type plasminogen activator (uPA) was elevated in the gastrocnemius but not in the adductor muscle in FSAP-/- mice. Conclusions: Arteriogenesis is enhanced, and this is associated with a higher infiltration of monocytes, in the absence of endogenous FSAP but angiogenesis is unchanged. Exogenous FSAP had the opposite effect on arteriogenesis indicating a possible therapeutic potential of modulating endogenous FSAP

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue

    DNA methylation profiling to predict recurrence risk in meningioma: development and validation of a nomogram to optimize clinical management

    Get PDF
    Abstract Background Variability in standard-of-care classifications precludes accurate predictions of early tumor recurrence for individual patients with meningioma, limiting the appropriate selection of patients who would benefit from adjuvant radiotherapy to delay recurrence. We aimed to develop an individualized prediction model of early recurrence risk combining clinical and molecular factors in meningioma. Methods DNA methylation profiles of clinically annotated tumor samples across multiple institutions were used to develop a methylome model of 5-year recurrence-free survival (RFS). Subsequently, a 5-year meningioma recurrence score was generated using a nomogram that integrated the methylome model with established prognostic clinical factors. Performance of both models was evaluated and compared with standard-of-care models using multiple independent cohorts. Results The methylome-based predictor of 5-year RFS performed favorably compared with a grade-based predictor when tested using the 3 validation cohorts (ΔAUC = 0.10, 95% CI: 0.03–0.018) and was independently associated with RFS after adjusting for histopathologic grade, extent of resection, and burden of copy number alterations (hazard ratio 3.6, 95% CI: 1.8–7.2, P &lt; 0.001). A nomogram combining the methylome predictor with clinical factors demonstrated greater discrimination than a nomogram using clinical factors alone in 2 independent validation cohorts (ΔAUC = 0.25, 95% CI: 0.22–0.27) and resulted in 2 groups with distinct recurrence patterns (hazard ratio 7.7, 95% CI: 5.3–11.1, P &lt; 0.001) with clinical implications. Conclusions The models developed and validated in this study provide important prognostic information not captured by previously established clinical and molecular factors which could be used to individualize decisions regarding postoperative therapeutic interventions, in particular whether to treat patients with adjuvant radiotherapy versus observation alone. </jats:sec

    Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.

    Get PDF
    Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation

    VEGF-A-Cleavage by FSAP and Inhibition of Neo-Vascularization

    No full text
    Alternative splicing leads to the secretion of multiple forms of vascular endothelial growth factor-A (VEGF-A) that differ in their activity profiles with respect to neovascularization. FSAP (factor VII activating protease) is the zymogen form of a plasma protease that is activated (FSAPa) upon tissue injury via the release of histones. The purpose of the study was to determine if FSAPa regulates VEGF-A activity in vitro and in vivo. FSAP bound to VEGF165, but not VEGF121, and VEGF165 was cleaved in its neuropilin/proteoglycan binding domain. VEGF165 cleavage did not alter its binding to VEGF receptors but diminished its binding to neuropilin. The stimulatory effects of VEGF165 on endothelial cell proliferation, migration, and signal transduction were not altered by FSAP. Similarly, proliferation of VEGF receptor-expressing BAF3 cells, in response to VEGF165, was not modulated by FSAP. In the mouse matrigel model of angiogenesis, FSAP decreased the ability of VEGF165, basic fibroblast growth factor (bFGF), and their combination, to induce neovascularization. Lack of endogenous FSAP in mice did not influence neovascularization. Thus, FSAP inhibited VEGF165-mediated angiogenesis in the matrigel model in vivo, where VEGF’s interaction with the matrix and its diffusion are important

    Acute Abdominal Pain as a Result of an Isolated Left Ovarian Vein Thrombosis

    No full text
    Ovarian vein thrombosis (OVT) is a rare thromboembolic condition. It involves the right ovarian vein in 70–80% of cases. The risk factors for the development of OVT are pregnancy or puerperium, hormone therapy with estrogen, recent surgery or hospitalization, malignancy, pelvic inflammatory diseases, thrombophilia and idiopathic OVT. We present a rare case of left OVT in a young, non-pregnant woman in her 30 s. A high degree of suspicion is necessitated in patients with the triad of young-middle-aged female, pain abdomen in lower quadrant and hematuria to diagnose OVT. Contrast enhanced computer tomography (CT-venography) is the diagnostic modality of choice. The patient was initially treated with low molecular weight heparin and then switched to direct oral anticoagulants. At 6-monthsfollow-up the patient was free from any symptoms

    Analysis of cardiovascular mortality, bleeding, vascular and cerebrovascular events in patients with atrial fibrillation vs. sinus rhythm undergoing transfemoral Transcatheter Aortic Valve Implantation (TAVR)

    No full text
    Abstract Background Transcatheter aortic valve replacement (TAVR) has been demonstrated to be an established therapy for high-risk, inoperable patients with severe symptomatic aortic valve stenosis. For patients with moderate surgical risk, TAVR is equivalent to conventional aortic valve surgery. However, atrial fibrillation (AF) is also present in many of these patients, thus requiring post-implantation oral anticoagulation therapy in addition to the inhibition of thrombocyte aggregation, which poses the risk of bleeding complications. The aim of our work was to investigate the influence of AF on mortality and the occurrence of bleeding, vascular and cerebrovascular complications related to TAVR according to the VARC-2 criteria. Methods Two hundred eighty-three patients who underwent TAVR between March 2010 and April 2016 were retrospectively examined. In total, 257 patients who underwent transfemoral access were included in this study. The mean patient age was 81 ± 6 years, 54.1% of the patients were women, and 42.4% had pre-interventional AF. Results Compared to patients with sinus rhythm (SR, n = 148), patients with AF (n = 109) had an almost three-fold higher incidence of major vascular complications (AF 14.7% vs. SR 5.4%, p = 0.016) and life-threatening bleeding (AF 11.9% vs. SR 4.1%, p = 0.028) during the first 30 post-procedural days. However, the rate of cerebrovascular complications (AF 3.7% vs. SR 2.7%, p = 0.726) did not significantly differ between the two groups. Overall mortality was significantly higher in patients with AF during the first month (AF 8.3% vs. SR 2.0%, p = 0.032) and the first year (AF 28.4% vs. SR 15.3%; p = 0.020) following TAVR. Conclusion Patients with AF had significantly more severe bleeding complications after TAVR, which were significantly related to mortality. Future prospective randomized studies must clarify the optimal anticoagulation therapy for patients with AF after TAVR. Trial registration DRKS00011798 on DRKS (Date 17.03.2017)
    corecore