213 research outputs found

    Plasticity in a changing world: Behavioural responses to human perturbations

    Get PDF
    Most insect species are affected by Human Induced Rapid Environmental Changes (HIREC). Multiple responses to HIREC are observed in insects, such as modifications of their morphology, physiology, behavioural strategies or phenology. Most of the responses involve phenotypic plasticity rather than genetic evolution. Here, we review the involvement of behavioural plasticity in foraging, reproduction, habitat choice and dispersal; and how behavioural plasticity modifies social behaviour and inter-specific interactions. Although important, behavioural plasticity is rarely sufficient to cope with HIREC. An increasing number of studies find species to respond maladaptively or insufficiently to various anthropogenic disturbances, and less often is large degree of plasticity linked to success.Peer reviewe

    The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect

    Get PDF
    Landscape changes are known to exacerbate the impacts of climate change. As such, understanding the combined effect of climate and landscape on agroecosystems is vital if we are to maintain the function of agroecosystems. This study aimed to elucidate the effects of agricultural landscape complexity on the microclimate and thermal tolerance of an aphid pest to better understand how landscape and climate may interact to affect the thermal tolerance of pest species within the context of global climate change. Meteorological data were measured at the landscape level, and cereal aphids (Sitobion avenae, Metopolophium dirhodum and Rhopalosiphum padi) sampled, from contrasting landscapes (simple and complex) in winter 2013/2014 and spring 2014 in cereal fields of Brittany, France. Aphids were returned to the laboratory and the effect of landscape of origin on aphid cold tolerance (as determined by CTmin ) was investigated. Results revealed that local landscape complexity significantly affected microclimate, with simple homogenous landscapes being on average warmer, but with greater temperature variation. Landscape complexity was shown to impact aphid cold tolerance, with aphids from complex landscapes being more cold tolerant than those from simple landscapes in both winter and spring, but with differences among species. This study highlights that future changes to land use could have implications for the thermal tolerance and adaptability of insects. Furthermore, not all insect species respond in a similar way to microhabitat and microclimate, which could disrupt important predator-prey relationships and the ecosystem service they provide

    Why is there no impact of the host species on the cold tolerance of a generalist parasitoid?

    Get PDF
    For generalist parasitoids such as those belonging to the Genus Aphidius, the choice of host species can have profound implications for the emerging parasitoid. Host species is known to affect a variety of life history traits. However, the impact of the host on thermal tolerance has never been studied. Physiological thermal tolerance, enabling survival at unfavourable temperatures, is not a fixed trait and may be influenced by a number of external factors including characteristics of the stress, of the individual exposed to the stress, and of the biological and physical environment. As such, the choice of host species is likely to also have implications for the thermal tolerance of the emerging parasitoid. The current study aimed to investigate the effect of cereal aphid host species (Sitobion avenae, Rhopalosiphum padi and Metopolophium dirhodum) on adult thermal tolerance, in addition to sex and size, of the aphid parasitoids Aphidius avenae, Aphidius matricariae and Aphidius rhopalosiphi. Results revealed no effect of host species on the cold tolerance of the emerging parasitoid, as determined by CTmin and Chill Coma, for all parasitoid species. Host species significantly affected the size of the emerging parasitoid for A. rhopalosiphi only, with individuals emerging from R. padi being significantly larger than those emerging from S. avenae, although this did not correspond to a difference in thermal tolerance. Furthermore, a significant difference in the size of male and female parasitoids was observed for A. avenae and A. matricariae, although, once again this did not correspond to a difference in cold tolerance. It is suggested that potential behavioural thermoregulation via host manipulation may act to influence the thermal environment experienced by the wasp and thus wasp thermal tolerance and, in doing so, may negate physiological thermal tolerance or any impact of the aphid host

    The male mate search: an optimal foraging issue?

    Get PDF
    5 pagesInternational audienceMale insects must find and mate females to have some descendants; male fitness therefore depends on the number of females they inseminate. Males are for this reason expected to optimize the behaviors related to mate location, orientation and copulation. Although optimization of the reproductive behavior of males has long been neglected in the literature, recent studies suggest a renewed interest for this idea. Here we discuss the parallel between male mate-finding and mating strategies in insects and optimal foraging theory (OFT), a class of models which formalize the behavior of organisms seeking and exploiting resources, generally food. We highlight the different facets of male mating systems allowing such a parallel, and claim for a unifying approach of foraging behavior. Finally, we discuss novel research perspective emerging from the application of OFT to male reproductive behavior

    Early life nutritional quality effects on adult memory retention in a parasitic wasp

    Get PDF
    Nutritional quality during early life can affect learning ability and memory retention of animals. Here we studied the effect of resource quality gained during larval development on the learning ability and memory retention of 2 sympatric strains of similar genetic background of the parasitoid Trichogramma brassicae: one uninfected and one infected by Wolbachia. Wolbachia is a common arthropod parasite/mutualistic symbiont with a range of known effects on host fitness. Here we studied, for the first time, the interaction between resource quality and Wolbachia infection on memory retention and resource acquisition. Memory retention of uninfected wasps was significantly longer when reared on high quality hosts when compared to low quality hosts. Furthermore, uninfected wasps emerging from high quality hosts showed higher values of protein and triglyceride than those emerging from low quality hosts. In contrast, the memory retention for infected wasps was the same irrespective of host quality, although retention was significantly lower than uninfected wasps. No significant effect of host quality on capital resource amount of infected wasps was observed, and infected wasps displayed a lower amount of protein and triglyceride than uninfected wasps when reared on high quality hosts. This study suggests that the nutritional quality of the embryonic period can affect memory retention of adult wasps not infected by Wolbachia. However, by manipulating the host’s obtained capital resource amount, Wolbachia could enable exploitation of the maximum available resources from a range of hosts to acquire suitable performance in complex environments

    Évolution spatiotemporelle de la diversité et du fonctionnement d'une guilde de parasitoïdes

    Get PDF
    Cette thèse porte sur l analyse des dimensions spatiale et temporelle du fonctionnement et de la diversité taxonomique et fonctionnelle d une guilde. Au sein d une guilde, les espèces exploitent un même type de ressources; pour cette raison, les niches écologiques fondamentales des membres d une guilde sont similaires et une relation de compétition interspécifique se met en place si la ressource partagée est limitante. Quatre questions principales sur le fonctionnement d une guilde ont été abordées : (1) à quelles échelles spatio-temporelles se structurent la guilde et les ressources exploitées, (2) quelles sont les influences respectives des filtres environnementaux et des interactions interspécifiques sur les traits fonctionnels des membres de la guilde, (3) quelle est la stratégie d exploitation de ressources d un membre de la guilde face à une faible disponibilité de ressources et (4) quel est l impact du contexte climatique sur la structure d une guilde et de son réseau trophique, et sur le degré de spécialisation écologique des espèces de la guilde sur la ressource. Le modèle biologique de cette étude a été une guilde de parasitoïdes de pucerons de céréales (Hymenoptera : Braconidae : Aphidiinae). Ces parasitoïdes s attaquent aux pucerons (Homoptera : Aphididae) inféodés aux céréales dans les agroécosystèmes. Les variations d abondance relative des parasitoïdes et de leurs hôtes ont été importantes aux échelles interrégionale et interannuelle, mais très faibles à l échelle intra-régionale. La divergence des traits fonctionnels des parasitoïdes s est maintenue sur trois régions et deux années, et le contexte local a influencé les traits de la guilde dans son ensemble. Pendant la saison hivernale, une période marquée par une faible densité de pucerons, le parasitoïde Aphidius rhopalosiphi a présenté des stratégies contrastées pour maximiser sa fitness en exploitant les hôtes Sitobion avenae et Rhopalosiphum padi, mais une forte spécialisation écologique sur le terrain a été observée en présence d une espèce compétitrice : Aphidius avenae. Cette présence a pu être corrélée à une hausse des températures hivernales.This thesis is an analysis of the spatial and temporal dimensions of the functioning and taxonomic and functional diversity of a guild. In a guild, species exploit the same type of resources; consequently, fundamental ecological niches of guild members are similar and an interspecific competitive relationship is established if shared resources are limiting. Four main questions on the functioning of a guild are addressed: (1) the spatiotemporal scales to which guilds the guild and its exploited resources are structures, (2) the respective weight of environmental filtering and interspecific interactions on the configuration of realized niches of guild members, (3) the strategy of resource exploitation in a guild member facing low resource availability and (4) the impact of climatic context on the structure of a guild and its food web, and the degree of specialisation on resources. The biological model chosen in this study was a cereal aphid parasitoid guild (Hymenoptera: Braconidae: Aphidiinae). Those parasitoids attack aphids (Homoptera: Aphididae) in agroecosystems, which are anthropised environments marked by high disturbance rates and in which host resources are variable in density and in quality. Relative abundance variations in parasitoids and in their hosts were considerable at interregional and interannual scales, but weak at the intra-regional scale. Functional trait divergence in parasitoids was maintained across three regions and two years, and regional and annual environmental contexts influenced guild traits as a whole. In winter, a period marked by low aphid density, the parasitoid Aphidius rhopalosiphi presented contrasted strategies to maximise fitness whilst exploiting Sitobion avenae and Rhopalosiphum padi hosts, but a high degree of ecological specialisation in the field was observed in the presence of a competitive species, Aphidius avenae. This presence was correlated to an increase in winter temperatures.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Sex makes them sleepy: host reproductive status induces diapause in a parasitoid population experiencing harsh winters

    Get PDF
    When organisms coevolve, any change in one species can induce phenotypic changes in traits and ecology of the other species. The role such interactions play in ecosystems is central, but their mechanistic bases remain underexplored. Upper trophic level species have to synchronize their life-cycle to both abiotic conditions and to lower trophic level species’ phenology and phenotypic variations. We tested the effect of host seasonal strategy on parasitoid diapause induction by using a holocyclic clone of the pea aphid Acyrthosiphon pisum producing asexual and sexual morphs that are viviparous females (i.e. laying embryos) and oviparous females (laying eggs), respectively, the latter being only present at the end of the growing season. Aphidius ervi parasitoids from populations of contrasted climatic origin (harsh vs. mild winter areas) were allowed to parasitize each morph in a split-brood design and developing parasitoids were next reared under either fall-like or summer-like temperature-photoperiod conditions. We next examined aspects of the host physiological state by comparing the relative proportion of forty-seven metabolites and lipid reserves in both morphs produced under the same conditions. We found that oviparous morphs are cues per se for diapause induction; parasitoids entered diapause at higher levels when developing in oviparous hosts (19.4 ± 3.0%) than in viviparous ones (3.6 ± 1.3%), under summer-like conditions (i.e., when oviparous aphids appear in the fields). This pattern was only observed in parasitoids from the harsh winter area since low diapause levels were observed in the other population, suggesting local adaptations to overwintering cues. Metabolomics analyses show parasitoids’ response to be mainly influenced by the host’s physiology, with higher proportion of polyols and sugars, and more fat reserves being found in oviparous morphs. Host quality thus varies across the seasons and represents one of the multiple environmental parameters affecting parasitoid diapause. Our results underline strong coevolutionary processes between hosts and parasitoids in their area of origin, likely leading to phenological synchronization, and we point out the importance of such bottom-up effects for trait expression, and for the provision of ecosystem services such as biological control in the context of climate change

    Spatiotemporal variations in aphid-parasitoid relative abundance patterns and food webs in agricultural ecosystems

    Get PDF
    Understanding the stability of communities is fundamental in theoretical and applied ecology. Organisms atop trophic chains are particularly sensitive to disturbance, especially when they are dependent on a specific trophic resource subject to strong fluctuations in density and quality, which is the case of parasitoids. We investigated the (1) variability in spatiotemporal relative abundance patterns of a cereal aphid parasitoid community, determining at what scales such patterns vary in agrosystems. We also investigated whether (2) parasitoid relative abundances are strongly influenced by host relative abundances and if (3) different host species are exploited at distinct rates. Aphid parasitoid populations were monitored in three remote agricultural regions in France between 2010 and 2012. Five parasitoid species (Hymenoptera: Braconidae: Aphidiinae) and three aphid species (Hemiptera: Aphididae) were identified in each of those three regions. Fields sampled in one region in a single year exhibited similar relative abundance patterns, with aphid parasitoid communities varying across regions and years. All parasitoid species were able to exploit each monitored host species. Metopolophium dirhodum Wlk was consistently a more frequent species among parasitized aphids than among living aphids, indicating that this aphid species was exploited at a higher rate than the other two aphid species found (Sitobion avenae F and Rhopalosiphum padi L). Those findings suggest the cereal aphid-parasitoid network is not strictly determined by the intrinsic permanent environmental characteristics but partially varies from one year to another. The similarity in abundance patterns in different fields of a region in a given year suggests the existence of a mechanism allowing a rapid synchronisation of the relative abundance patterns at an intra-regional scale. This phenomenon could be useful in predicting host-parasitoid communities and bear important consequences for the ecosystem service provided by parasitoids

    Rising temperature reduces divergence in resource use strategies in coexisting parasitoid species.

    Get PDF
    International audienceCoexistence of species sharing the same resources is often possible if species are phylogenetically divergent in resource acquisition and allocation traits, decreasing competition between them. Developmental and life-history traits related to resource use are influenced by environmental conditions such as temperature, but thermal trait responses may differ among species. An increase in ambient temperature may, therefore, affect trait divergence within a community, and potentially species coexistence. Parasitoids are interesting models to test this hypothesis, because multiple species commonly attack the same host, and employ divergent larval and adult host use strategies. In particular, development mode (arrested or continued host growth following parasitism) has been recognized as a major organiser of parasitoid life histories. Here, we used a comparative trait-based approach to determine thermal responses of development time, body mass, egg load, metabolic rate and energy use of the coexisting Drosophila parasitoids Asobara tabida, Leptopilina heterotoma, Trichopria drosophilae and Spalangia erythromera. We compared trait values between species and development modes, and calculated trait divergence in response to temperature, using functional diversity indices. Parasitoids differed in their thermal response for dry mass, metabolic rate and lipid use throughout adult life, but only teneral lipid reserves and egg load were affected by developmental mode. Species-specific trait responses to temperature were probably determined by their adaptations in resource use (e.g. lipogenesis or ectoparasitism). Overall, trait values of parasitoid species converged at the higher temperature. Our results suggest that local effects of warming could affect host resource partitioning by reducing trait diversity in communities
    • …
    corecore